STT-tensorflow/tensorflow/lite/kernels/sub_test.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

440 lines
18 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <limits>
#include <vector>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class BaseSubOpModel : public SingleOpModel {
public:
BaseSubOpModel(const TensorData& input1, const TensorData& input2,
const TensorData& output,
ActivationFunctionType activation_type) {
input1_ = AddInput(input1);
input2_ = AddInput(input2);
output_ = AddOutput(output);
SetBuiltinOp(BuiltinOperator_SUB, BuiltinOptions_SubOptions,
CreateSubOptions(builder_, activation_type).Union());
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
}
int input1() { return input1_; }
int input2() { return input2_; }
protected:
int input1_;
int input2_;
int output_;
};
class FloatSubOpModel : public BaseSubOpModel {
public:
using BaseSubOpModel::BaseSubOpModel;
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
};
class IntegerSubOpModel : public BaseSubOpModel {
public:
using BaseSubOpModel::BaseSubOpModel;
std::vector<int32_t> GetOutput() { return ExtractVector<int32_t>(output_); }
};
class QuantizedSubOpModel : public BaseSubOpModel {
public:
using BaseSubOpModel::BaseSubOpModel;
template <typename integer_dtype>
std::vector<float> GetDequantizedOutput() {
return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_),
GetScale(output_), GetZeroPoint(output_));
}
std::vector<float> GetDequantizedOutputInt16() {
return Dequantize<int16_t>(ExtractVector<int16_t>(output_),
GetScale(output_), GetZeroPoint(output_));
}
};
// for quantized Sub, the error shouldn't exceed step
float GetTolerance(int min, int max) {
float kQuantizedStep = (max - min) / 255.0;
return kQuantizedStep;
}
float GetToleranceInt16(float min, float max) {
float kQuantizedStep = (max - min) / std::numeric_limits<int16_t>::max();
return kQuantizedStep;
}
TEST(FloatSubOpModel, NoActivation) {
FloatSubOpModel m({TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 1.7, 0.5});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.8});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-2.1, 0.0, 1.4, -0.3})));
}
TEST(FloatSubOpModel, ActivationRELU_N1_TO_1) {
FloatSubOpModel m(
{TensorType_FLOAT32, {1, 2, 2, 1}}, {TensorType_FLOAT32, {1, 2, 2, 1}},
{TensorType_FLOAT32, {}}, ActivationFunctionType_RELU_N1_TO_1);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 1.7, 0.5});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.8});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-1.0, 0.0, 1.0, -0.3})));
}
TEST(FloatSubOpModel, VariousInputShapes) {
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatSubOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 1.7, 0.5, -1.1, 2.0});
m.PopulateTensor<float>(m.input2(), {0.1, 0.2, 0.3, 0.8, -1.1, 0.1});
m.Invoke();
EXPECT_THAT(
m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-2.1, 0.0, 1.4, -0.3, 0.0, 1.9})))
<< "With shape number " << i;
}
}
TEST(FloatSubOpModel, WithBroadcast) {
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatSubOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {}}, // always a scalar
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 1.7, 0.5, -1.1, 2.0});
m.PopulateTensor<float>(m.input2(), {0.5});
m.Invoke();
EXPECT_THAT(
m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-2.5, -0.3, 1.2, 0.0, -1.6, 1.5})))
<< "With shape number " << i;
}
}
TEST(FloatSubOpModel, WithBroadcast5D) {
std::vector<std::vector<int>> test_shapes = {{1, 3, 1, 2, 1}};
for (int i = 0; i < test_shapes.size(); ++i) {
FloatSubOpModel m({TensorType_FLOAT32, test_shapes[i]},
{TensorType_FLOAT32, {}}, // always a scalar
{TensorType_FLOAT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<float>(m.input1(), {-2.0, 0.2, 1.7, 0.5, -1.1, 2.0});
m.PopulateTensor<float>(m.input2(), {0.5});
m.Invoke();
EXPECT_THAT(
m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-2.5, -0.3, 1.2, 0.0, -1.6, 1.5})))
<< "With shape number " << i;
}
}
TEST(IntegerSubOpModel, NoActivation) {
IntegerSubOpModel m({TensorType_INT32, {1, 2, 2, 1}},
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
ActivationFunctionType_NONE);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8});
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-21, 0, 4, 3}));
}
TEST(IntegerSubOpModel, ActivationRELU_N1_TO_1) {
IntegerSubOpModel m({TensorType_INT32, {1, 2, 2, 1}},
{TensorType_INT32, {1, 2, 2, 1}}, {TensorType_INT32, {}},
ActivationFunctionType_RELU_N1_TO_1);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8});
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-1, 0, 1, 1}));
}
TEST(IntegerSubOpModel, VariousInputShapes) {
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
IntegerSubOpModel m({TensorType_INT32, test_shapes[i]},
{TensorType_INT32, test_shapes[i]},
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8, 11, 20});
m.PopulateTensor<int32_t>(m.input2(), {1, 2, 3, 5, 11, 1});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-21, 0, 4, 3, 0, 19}))
<< "With shape number " << i;
}
}
TEST(IntegerSubOpModel, WithBroadcast) {
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}, {1, 3, 1, 2, 1}};
for (int i = 0; i < test_shapes.size(); ++i) {
IntegerSubOpModel m({TensorType_INT32, test_shapes[i]},
{TensorType_INT32, {}}, // always a scalar
{TensorType_INT32, {}}, ActivationFunctionType_NONE);
m.PopulateTensor<int32_t>(m.input1(), {-20, 2, 7, 8, 11, 20});
m.PopulateTensor<int32_t>(m.input2(), {1});
m.Invoke();
EXPECT_THAT(m.GetOutput(),
ElementsAreArray(ArrayFloatNear({-21, 1, 6, 7, 10, 19})))
<< "With shape number " << i;
}
}
template <TensorType tensor_type, typename integer_dtype>
void QuantizedTestsNoActivation() {
float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
std::vector<std::vector<float>> inputs1 = {
{0.1, 0.2, 0.3, 0.4}, {-0.2, 0.2, 0.4, 0.7}, {-0.01, 0.2, 0.7, 0.3}};
std::vector<std::vector<float>> inputs2 = {
{0.6, 0.4, 0.3, 0.1}, {0.6, 0.4, 0.5, -0.2}, {0.6, 0.4, -0.18, 0.5}};
std::vector<std::vector<float>> results = {{-0.5, -0.2, 0.0, 0.3},
{-0.8, -0.2, -0.1, 0.9},
{-0.61, -0.2, 0.88, -0.2}};
for (int i = 0; i < inputs1.size(); ++i) {
QuantizedSubOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
{tensor_type, {}, -1.0, 1.0},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<integer_dtype>(m.input1(), inputs1[i]);
m.QuantizeAndPopulate<integer_dtype>(m.input2(), inputs2[i]);
m.Invoke();
EXPECT_THAT(
m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear(results[i], kQuantizedTolerance)))
<< "With test number " << i;
}
}
TEST(QuantizedSubOpModel, QuantizedTestsNoActivationUInt8) {
QuantizedTestsNoActivation<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedSubOpModel, QuantizedTestsNoActivationInt8) {
QuantizedTestsNoActivation<TensorType_INT8, int8_t>();
}
template <TensorType tensor_type, typename integer_dtype>
void QuantizedTestsActivationRELU_N1_TO_1() {
float kQuantizedTolerance = GetTolerance(-1.0, 1.0);
std::vector<std::vector<float>> inputs1 = {{-0.8, 0.2, 0.9, 0.7},
{-0.8, 0.2, 0.7, 0.5}};
std::vector<std::vector<float>> inputs2 = {{0.6, 0.4, 0.9, -0.8},
{0.6, 0.4, -0.8, 0.3}};
std::vector<std::vector<float>> results = {{-1.0, -0.2, 0.0, 1.0},
{-1.0, -0.2, 1.0, 0.2}};
for (int i = 0; i < inputs1.size(); ++i) {
QuantizedSubOpModel m({tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
{tensor_type, {1, 2, 2, 1}, -1.0, 1.0},
{tensor_type, {}, -1.0, 1.0},
ActivationFunctionType_RELU_N1_TO_1);
m.QuantizeAndPopulate<integer_dtype>(m.input1(), inputs1[i]);
m.QuantizeAndPopulate<integer_dtype>(m.input2(), inputs2[i]);
m.Invoke();
EXPECT_THAT(
m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear(results[i], kQuantizedTolerance)))
<< "With test number " << i;
}
}
TEST(QuantizedSubOpModel, QuantizedTestsActivationRELUN1TO1UInt8) {
QuantizedTestsActivationRELU_N1_TO_1<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedSubOpModel, QuantizedTestsActivationRELUN1TO1Int8) {
QuantizedTestsActivationRELU_N1_TO_1<TensorType_INT8, int8_t>();
}
template <TensorType tensor_type, typename integer_dtype>
void QuantizedVariousInputShapes() {
float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
QuantizedSubOpModel m({tensor_type, test_shapes[i], -3.0, 3.0},
{tensor_type, test_shapes[i], -3.0, 3.0},
{tensor_type, {}, -3.0, 3.0},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<integer_dtype>(m.input1(),
{-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
m.QuantizeAndPopulate<integer_dtype>(m.input2(),
{0.1, 0.3, 0.3, 0.5, 1.1, 0.1});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear(
{-2.1, -0.1, 0.4, 0.3, 0.0, 1.9}, kQuantizedTolerance)))
<< "With shape number " << i;
}
}
TEST(QuantizedSubOpModel, QuantizedVariousInputShapesUInt8) {
QuantizedVariousInputShapes<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedSubOpModel, QuantizedVariousInputShapesInt8) {
QuantizedVariousInputShapes<TensorType_INT8, int8_t>();
}
template <TensorType tensor_type, typename integer_dtype>
void QuantizedWithBroadcast() {
float kQuantizedTolerance = GetTolerance(-3.0, 3.0);
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}};
for (int i = 0; i < test_shapes.size(); ++i) {
QuantizedSubOpModel m(
{tensor_type, test_shapes[i], -3.0, 3.0}, {tensor_type, {}, -3.0, 3.0},
{tensor_type, {}, -3.0, 3.0}, ActivationFunctionType_NONE);
m.QuantizeAndPopulate<integer_dtype>(m.input1(),
{-2.0, 0.2, 0.7, 0.8, 1.1, 2.0});
m.QuantizeAndPopulate<integer_dtype>(m.input2(), {0.7});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(),
ElementsAreArray(ArrayFloatNear(
{-2.7, -0.5, 0.0, 0.1, 0.4, 1.3}, kQuantizedTolerance)))
<< "With shape number " << i;
}
}
TEST(QuantizedSubOpModel, QuantizedWithBroadcastUInt8) {
QuantizedWithBroadcast<TensorType_UINT8, uint8_t>();
}
TEST(QuantizedSubOpModel, QuantizedWithBroadcastInt8) {
QuantizedWithBroadcast<TensorType_INT8, int8_t>();
}
TEST(QuantizedSubOpModel, QuantizedTestsNoActivationInt16) {
const float kMin = -1.f;
const float kMax =
static_cast<float>(std::numeric_limits<int16_t>::max() - 1) /
std::numeric_limits<int16_t>::max();
float kQuantizedTolerance = GetToleranceInt16(kMin, kMax);
std::vector<std::vector<float>> inputs1 = {
{0.7, 0.6, 0.6, 0.5}, {-0.2, 0.6, 0.9, -0.1}, {-0.2, 0.6, -0.3, 0.8}};
std::vector<std::vector<float>> inputs2 = {
{0.6, 0.4, 0.3, 0.1}, {0.6, 0.4, 0.5, -0.8}, {0.6, 0.4, 0.8, 0.5}};
std::vector<std::vector<float>> results = {
{0.1, 0.2, 0.3, 0.4}, {-0.8, 0.2, 0.4, 0.7}, {-0.8, 0.2, -1.0, 0.3}};
for (int i = 0; i < inputs1.size(); ++i) {
QuantizedSubOpModel m({TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
{TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
{TensorType_INT16, {}, kMin, kMax},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int16_t>(m.input1(), inputs1[i]);
m.QuantizeAndPopulate<int16_t>(m.input2(), inputs2[i]);
m.Invoke();
EXPECT_THAT(
m.GetDequantizedOutputInt16(),
ElementsAreArray(ArrayFloatNear(results[i], kQuantizedTolerance)))
<< "With test number " << i;
}
}
TEST(QuantizedSubOpModel, QuantizedTestsReluActivationInt16) {
const float kMin = -2.f;
const float kMax = 2.0 * (std::numeric_limits<int16_t>::max() - 1) /
std::numeric_limits<int16_t>::max();
float kQuantizedTolerance = GetToleranceInt16(kMin, kMax);
std::vector<std::vector<float>> inputs1 = {{-0.8, 0.2, 0.9, 0.7},
{-0.8, 0.2, 0.7, 0.5}};
std::vector<std::vector<float>> inputs2 = {{0.6, 0.4, 0.9, -0.8},
{0.6, 0.4, -0.8, 0.3}};
std::vector<std::vector<float>> results = {{-1.0, -0.2, 0.0, 1.0},
{-1.0, -0.2, 1.0, 0.2}};
for (int i = 0; i < inputs1.size(); ++i) {
QuantizedSubOpModel m({TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
{TensorType_INT16, {1, 2, 2, 1}, kMin, kMax},
{TensorType_INT16, {}, kMin, kMax},
ActivationFunctionType_RELU_N1_TO_1);
m.QuantizeAndPopulate<int16_t>(m.input1(), inputs1[i]);
m.QuantizeAndPopulate<int16_t>(m.input2(), inputs2[i]);
m.Invoke();
EXPECT_THAT(
m.GetDequantizedOutputInt16(),
ElementsAreArray(ArrayFloatNear(results[i], kQuantizedTolerance)))
<< "With test number " << i;
}
}
TEST(QuantizedSubOpModel, QuantizedTestsNoActivationBroadcastInt16) {
const float kMin = -1.f;
const float kMax =
static_cast<float>(std::numeric_limits<int16_t>::max() - 1) /
std::numeric_limits<int16_t>::max();
float kQuantizedTolerance = GetToleranceInt16(kMin, kMax);
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}, {1, 3, 1, 2, 1}};
for (int i = 0; i < test_shapes.size(); ++i) {
QuantizedSubOpModel m({TensorType_INT16, test_shapes[i], kMin, kMax},
{TensorType_INT16, {}, kMin, kMax},
{TensorType_INT16, {}, kMin, kMax},
ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int16_t>(m.input1(),
{-0.9, -0.7, -0.3, 0.0, 0.3, 0.5});
m.QuantizeAndPopulate<int16_t>(m.input2(), {0.2});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutputInt16(),
ElementsAreArray(ArrayFloatNear(
{-1.0, -0.9, -0.5, -0.2, 0.1, 0.3}, kQuantizedTolerance)))
<< "With shape number " << i;
}
}
TEST(QuantizedSubOpModel, QuantizedTestsReluActivationBroadcastInt16) {
const float kMin = -2.f;
const float kMax = 2.0 * (std::numeric_limits<int16_t>::max() - 1) /
std::numeric_limits<int16_t>::max();
float kQuantizedTolerance = GetToleranceInt16(kMin, kMax);
std::vector<std::vector<int>> test_shapes = {
{6}, {2, 3}, {2, 1, 3}, {1, 3, 1, 2}, {1, 3, 1, 2, 1}};
for (int i = 0; i < test_shapes.size(); ++i) {
QuantizedSubOpModel m({TensorType_INT16, test_shapes[i], kMin, kMax},
{TensorType_INT16, {}, kMin, kMax},
{TensorType_INT16, {}, kMin, kMax},
ActivationFunctionType_RELU_N1_TO_1);
m.QuantizeAndPopulate<int16_t>(m.input1(),
{-0.9, -0.7, -0.3, 0.0, 0.3, 0.5});
m.QuantizeAndPopulate<int16_t>(m.input2(), {0.2});
m.Invoke();
EXPECT_THAT(m.GetDequantizedOutputInt16(),
ElementsAreArray(ArrayFloatNear(
{-1.0, -0.9, -0.5, -0.2, 0.1, 0.3}, kQuantizedTolerance)))
<< "With shape number " << i;
}
}
} // namespace
} // namespace tflite