STT-tensorflow/tensorflow/lite/kernels/squared_difference.cc
Sachin Joglekar 430b00361b Audit and improve TfLiteType checks in kernels
PiperOrigin-RevId: 316720436
Change-Id: I2032e799ee6afa533b932385c2a70f7621f4ac1b
2020-06-16 11:31:02 -07:00

135 lines
4.7 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stddef.h>
#include <stdint.h>
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/binary_function.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace squared_difference {
constexpr int kInputTensor1 = 0;
constexpr int kInputTensor2 = 1;
constexpr int kOutputTensor = 0;
struct OpData {
bool requires_broadcast;
};
template <typename T>
T SquaredDifference(T input1, T input2) {
const T difference = input1 - input2;
return difference * difference;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
auto* data = new OpData;
data->requires_broadcast = false;
return data;
}
void Free(TfLiteContext* context, void* buffer) {
delete reinterpret_cast<OpData*>(buffer);
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
OpData* data = reinterpret_cast<OpData*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
output->type = input2->type;
data->requires_broadcast = !HaveSameShapes(input1, input2);
TfLiteIntArray* output_size = nullptr;
if (data->requires_broadcast) {
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
context, input1, input2, &output_size));
} else {
output_size = TfLiteIntArrayCopy(input1->dims);
}
return context->ResizeTensor(context, output, output_size);
}
template <typename T>
void EvalSquaredDifference(TfLiteContext* context, TfLiteNode* node,
const OpData* data, const TfLiteTensor* input1,
const TfLiteTensor* input2, TfLiteTensor* output) {
if (data->requires_broadcast) {
reference_ops::BroadcastBinaryFunction4DSlow<T, T, T>(
GetTensorShape(input1), GetTensorData<T>(input1),
GetTensorShape(input2), GetTensorData<T>(input2),
GetTensorShape(output), GetTensorData<T>(output), SquaredDifference<T>);
} else {
reference_ops::BinaryFunction<T, T, T>(
GetTensorShape(input1), GetTensorData<T>(input1),
GetTensorShape(input2), GetTensorData<T>(input2),
GetTensorShape(output), GetTensorData<T>(output), SquaredDifference<T>);
}
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
OpData* data = reinterpret_cast<OpData*>(node->user_data);
ruy::profiler::ScopeLabel label("SquaredDifference");
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
if (output->type == kTfLiteFloat32) {
EvalSquaredDifference<float>(context, node, data, input1, input2, output);
} else if (output->type == kTfLiteInt32) {
EvalSquaredDifference<int32_t>(context, node, data, input1, input2, output);
} else {
context->ReportError(
context,
"SquaredDifference only supports FLOAT32 and INT32 now, got %d.",
output->type);
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace squared_difference
TfLiteRegistration* Register_SQUARED_DIFFERENCE() {
static TfLiteRegistration r = {
squared_difference::Init, squared_difference::Free,
squared_difference::Prepare, squared_difference::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite