135 lines
4.7 KiB
C++
135 lines
4.7 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include "ruy/profiler/instrumentation.h" // from @ruy
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/binary_function.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace squared_difference {
|
|
|
|
constexpr int kInputTensor1 = 0;
|
|
constexpr int kInputTensor2 = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct OpData {
|
|
bool requires_broadcast;
|
|
};
|
|
|
|
template <typename T>
|
|
T SquaredDifference(T input1, T input2) {
|
|
const T difference = input1 - input2;
|
|
return difference * difference;
|
|
}
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
auto* data = new OpData;
|
|
data->requires_broadcast = false;
|
|
return data;
|
|
}
|
|
|
|
void Free(TfLiteContext* context, void* buffer) {
|
|
delete reinterpret_cast<OpData*>(buffer);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
|
|
output->type = input2->type;
|
|
|
|
data->requires_broadcast = !HaveSameShapes(input1, input2);
|
|
|
|
TfLiteIntArray* output_size = nullptr;
|
|
if (data->requires_broadcast) {
|
|
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
|
|
context, input1, input2, &output_size));
|
|
} else {
|
|
output_size = TfLiteIntArrayCopy(input1->dims);
|
|
}
|
|
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
template <typename T>
|
|
void EvalSquaredDifference(TfLiteContext* context, TfLiteNode* node,
|
|
const OpData* data, const TfLiteTensor* input1,
|
|
const TfLiteTensor* input2, TfLiteTensor* output) {
|
|
if (data->requires_broadcast) {
|
|
reference_ops::BroadcastBinaryFunction4DSlow<T, T, T>(
|
|
GetTensorShape(input1), GetTensorData<T>(input1),
|
|
GetTensorShape(input2), GetTensorData<T>(input2),
|
|
GetTensorShape(output), GetTensorData<T>(output), SquaredDifference<T>);
|
|
} else {
|
|
reference_ops::BinaryFunction<T, T, T>(
|
|
GetTensorShape(input1), GetTensorData<T>(input1),
|
|
GetTensorShape(input2), GetTensorData<T>(input2),
|
|
GetTensorShape(output), GetTensorData<T>(output), SquaredDifference<T>);
|
|
}
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
ruy::profiler::ScopeLabel label("SquaredDifference");
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
if (output->type == kTfLiteFloat32) {
|
|
EvalSquaredDifference<float>(context, node, data, input1, input2, output);
|
|
} else if (output->type == kTfLiteInt32) {
|
|
EvalSquaredDifference<int32_t>(context, node, data, input1, input2, output);
|
|
} else {
|
|
context->ReportError(
|
|
context,
|
|
"SquaredDifference only supports FLOAT32 and INT32 now, got %d.",
|
|
output->type);
|
|
return kTfLiteError;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace squared_difference
|
|
|
|
TfLiteRegistration* Register_SQUARED_DIFFERENCE() {
|
|
static TfLiteRegistration r = {
|
|
squared_difference::Init, squared_difference::Free,
|
|
squared_difference::Prepare, squared_difference::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|