100 lines
3.2 KiB
C++
100 lines
3.2 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <initializer_list>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
template <typename T>
|
|
class ShapeOpModel : public SingleOpModel {
|
|
public:
|
|
ShapeOpModel(std::initializer_list<int> input_shape, TensorType input_type,
|
|
TensorType output_type) {
|
|
input_ = AddInput(input_type);
|
|
output_ = AddOutput(output_type);
|
|
SetBuiltinOp(BuiltinOperator_SHAPE, BuiltinOptions_ShapeOptions,
|
|
CreateShapeOptions(builder_, output_type).Union());
|
|
BuildInterpreter({input_shape});
|
|
}
|
|
|
|
TfLiteStatus InvokeWithResult() { return interpreter_->Invoke(); }
|
|
|
|
int input() { return input_; }
|
|
|
|
int32_t GetOutputSize() { return GetTensorSize(output_); }
|
|
std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
|
|
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
|
|
TfLiteAllocationType GetOutputAllocationType() const {
|
|
return interpreter_->tensor(interpreter_->outputs()[0])->allocation_type;
|
|
}
|
|
|
|
private:
|
|
int input_;
|
|
int output_;
|
|
};
|
|
|
|
TEST(ShapeOpTest, OutTypeInt) {
|
|
ShapeOpModel<int32_t> model({1, 3, 1, 3, 5}, TensorType_FLOAT32,
|
|
TensorType_INT32);
|
|
ASSERT_EQ(model.GetOutputAllocationType(), kTfLitePersistentRo);
|
|
|
|
// Unlike most ops, Rank populates outputs in Prepare().
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 3, 1, 3, 5}));
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({5}));
|
|
|
|
// Invoke is superfluous and shouldn't change the output.
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 3, 1, 3, 5}));
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({5}));
|
|
}
|
|
|
|
TEST(ShapeOpTest, OutTypeInt64) {
|
|
ShapeOpModel<int64_t> model({1, 3, 1, 3, 5}, TensorType_FLOAT32,
|
|
TensorType_INT64);
|
|
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 3, 1, 3, 5}));
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({5}));
|
|
}
|
|
|
|
TEST(ShapeOpTest, ScalarTensor) {
|
|
ShapeOpModel<int32_t> model({}, TensorType_FLOAT32, TensorType_INT32);
|
|
|
|
EXPECT_EQ(model.GetOutputSize(), 0);
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({0}));
|
|
}
|
|
|
|
TEST(ShapeOpTest, EmptyTensor) {
|
|
ShapeOpModel<int32_t> model({1, 0}, TensorType_FLOAT32, TensorType_INT32);
|
|
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0}));
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2}));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|