STT-tensorflow/tensorflow/lite/kernels/shape_test.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

100 lines
3.2 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <initializer_list>
#include <memory>
#include <vector>
#include <gtest/gtest.h>
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
template <typename T>
class ShapeOpModel : public SingleOpModel {
public:
ShapeOpModel(std::initializer_list<int> input_shape, TensorType input_type,
TensorType output_type) {
input_ = AddInput(input_type);
output_ = AddOutput(output_type);
SetBuiltinOp(BuiltinOperator_SHAPE, BuiltinOptions_ShapeOptions,
CreateShapeOptions(builder_, output_type).Union());
BuildInterpreter({input_shape});
}
TfLiteStatus InvokeWithResult() { return interpreter_->Invoke(); }
int input() { return input_; }
int32_t GetOutputSize() { return GetTensorSize(output_); }
std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
TfLiteAllocationType GetOutputAllocationType() const {
return interpreter_->tensor(interpreter_->outputs()[0])->allocation_type;
}
private:
int input_;
int output_;
};
TEST(ShapeOpTest, OutTypeInt) {
ShapeOpModel<int32_t> model({1, 3, 1, 3, 5}, TensorType_FLOAT32,
TensorType_INT32);
ASSERT_EQ(model.GetOutputAllocationType(), kTfLitePersistentRo);
// Unlike most ops, Rank populates outputs in Prepare().
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 3, 1, 3, 5}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({5}));
// Invoke is superfluous and shouldn't change the output.
model.Invoke();
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 3, 1, 3, 5}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({5}));
}
TEST(ShapeOpTest, OutTypeInt64) {
ShapeOpModel<int64_t> model({1, 3, 1, 3, 5}, TensorType_FLOAT32,
TensorType_INT64);
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 3, 1, 3, 5}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({5}));
}
TEST(ShapeOpTest, ScalarTensor) {
ShapeOpModel<int32_t> model({}, TensorType_FLOAT32, TensorType_INT32);
EXPECT_EQ(model.GetOutputSize(), 0);
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({0}));
}
TEST(ShapeOpTest, EmptyTensor) {
ShapeOpModel<int32_t> model({1, 0}, TensorType_FLOAT32, TensorType_INT32);
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2}));
}
} // namespace
} // namespace tflite