172 lines
5.7 KiB
C++
172 lines
5.7 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <functional>
|
|
#include <type_traits>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace range {
|
|
namespace {
|
|
|
|
constexpr int kStartTensor = 0;
|
|
constexpr int kLimitTensor = 1;
|
|
constexpr int kDeltaTensor = 2;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
template <typename T>
|
|
TfLiteStatus GetSize(TfLiteContext* context, T start, T limit, T delta,
|
|
int* size) {
|
|
TF_LITE_ENSURE(context, !std::equal_to<T>()(delta, 0));
|
|
TF_LITE_ENSURE(context,
|
|
(start > limit && delta < 0) || (start < limit && delta > 0));
|
|
*size =
|
|
(std::is_integral<T>::value
|
|
? ((std::abs(limit - start) + std::abs(delta) - 1) / std::abs(delta))
|
|
: std::ceil(std::abs((limit - start) / delta)));
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus ResizeOutput(TfLiteContext* context, const TfLiteTensor* start,
|
|
const TfLiteTensor* limit, const TfLiteTensor* delta,
|
|
TfLiteTensor* output) {
|
|
// The output will always be a 1-d array.
|
|
int size = 0;
|
|
switch (start->type) {
|
|
case kTfLiteInt32: {
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetSize(context, *GetTensorData<int32_t>(start),
|
|
*GetTensorData<int32_t>(limit),
|
|
*GetTensorData<int32_t>(delta), &size));
|
|
break;
|
|
}
|
|
case kTfLiteFloat32: {
|
|
TF_LITE_ENSURE_OK(context, GetSize(context, *GetTensorData<float>(start),
|
|
*GetTensorData<float>(limit),
|
|
*GetTensorData<float>(delta), &size));
|
|
break;
|
|
}
|
|
default: {
|
|
context->ReportError(context, "Unknown data type: %d", start->type);
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
TfLiteIntArray* output_shape_array = TfLiteIntArrayCreate(1);
|
|
output_shape_array->data[0] = size;
|
|
return context->ResizeTensor(context, output, output_shape_array);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* start = GetInput(context, node, kStartTensor);
|
|
const TfLiteTensor* limit = GetInput(context, node, kLimitTensor);
|
|
const TfLiteTensor* delta = GetInput(context, node, kDeltaTensor);
|
|
// Make sure all the inputs are scalars.
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(start), 0);
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(limit), 0);
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(delta), 0);
|
|
|
|
// Currently only supports int32 and float.
|
|
// TODO(b/117912892): Support quantization as well.
|
|
const auto dtype = start->type;
|
|
if (dtype != kTfLiteFloat32 && dtype != kTfLiteInt32) {
|
|
context->ReportError(context, "Unknown index output data type: %s",
|
|
TfLiteTypeGetName(dtype));
|
|
return kTfLiteError;
|
|
}
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, limit->type, dtype);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, delta->type, dtype);
|
|
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
output->type = dtype;
|
|
|
|
if (IsConstantTensor(start) && IsConstantTensor(limit) &&
|
|
IsConstantTensor(delta)) {
|
|
return ResizeOutput(context, start, limit, delta, output);
|
|
}
|
|
|
|
SetTensorToDynamic(output);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <typename T>
|
|
void EvalImpl(const TfLiteTensor* start, const TfLiteTensor* delta,
|
|
TfLiteTensor* output) {
|
|
const T start_value = *GetTensorData<T>(start);
|
|
const T delta_value = *GetTensorData<T>(delta);
|
|
T* output_data = GetTensorData<T>(output);
|
|
const int num_elements = NumElements(output);
|
|
T value = start_value;
|
|
for (int i = 0; i < num_elements; ++i) {
|
|
output_data[i] = value;
|
|
value += delta_value;
|
|
}
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* start = GetInput(context, node, kStartTensor);
|
|
const TfLiteTensor* limit = GetInput(context, node, kLimitTensor);
|
|
const TfLiteTensor* delta = GetInput(context, node, kDeltaTensor);
|
|
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
if (IsDynamicTensor(output)) {
|
|
TF_LITE_ENSURE_OK(context,
|
|
ResizeOutput(context, start, limit, delta, output));
|
|
}
|
|
|
|
switch (output->type) {
|
|
case kTfLiteInt32: {
|
|
EvalImpl<int32_t>(start, delta, output);
|
|
break;
|
|
}
|
|
case kTfLiteFloat32: {
|
|
EvalImpl<float>(start, delta, output);
|
|
break;
|
|
}
|
|
default: {
|
|
context->ReportError(context, "Unsupported data type: %d", output->type);
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace range
|
|
|
|
TfLiteRegistration* Register_RANGE() {
|
|
static TfLiteRegistration r = {nullptr, nullptr, range::Prepare, range::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|