180 lines
6.9 KiB
C++
180 lines
6.9 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
|
|
#include <vector>
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/kernels/internal/test_util.h"
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAre;
|
|
using ::testing::ElementsAreArray;
|
|
|
|
template <typename T>
|
|
class PowOpModel : public SingleOpModel {
|
|
public:
|
|
PowOpModel(const TensorData& input1, const TensorData& input2,
|
|
const TensorData& output) {
|
|
input1_ = AddInput(input1);
|
|
input2_ = AddInput(input2);
|
|
output_ = AddOutput(output);
|
|
SetBuiltinOp(BuiltinOperator_POW, BuiltinOptions_PowOptions,
|
|
CreatePowOptions(builder_).Union());
|
|
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
|
|
}
|
|
|
|
int input1() { return input1_; }
|
|
int input2() { return input2_; }
|
|
|
|
std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
|
|
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
|
|
|
|
private:
|
|
int input1_;
|
|
int input2_;
|
|
int output_;
|
|
};
|
|
|
|
TEST(PowOpModel, Simple) {
|
|
PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {}});
|
|
model.PopulateTensor<int32_t>(model.input1(), {12, 2, 7, 8});
|
|
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 1});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAre(12, 4, 343, 8));
|
|
}
|
|
|
|
TEST(PowOpModel, NegativeAndZeroValue) {
|
|
PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {}});
|
|
model.PopulateTensor<int32_t>(model.input1(), {0, 2, -7, 8});
|
|
model.PopulateTensor<int32_t>(model.input2(), {1, 2, 3, 0});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAre(0, 4, -343, 1));
|
|
}
|
|
|
|
TEST(PowOpModel, Float) {
|
|
PowOpModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {}});
|
|
model.PopulateTensor<float>(model.input1(), {0.3, 0.4, 0.7, 5.8});
|
|
model.PopulateTensor<float>(model.input2(), {0.5, 2.7, 3.1, 3.2});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear(
|
|
{0.5477226, 0.08424846, 0.33098164, 277.313}, 1e-3)));
|
|
}
|
|
|
|
TEST(PowOpModel, NegativeFloatTest) {
|
|
PowOpModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {}});
|
|
model.PopulateTensor<float>(model.input1(), {0.3, 0.4, 0.7, 5.8});
|
|
model.PopulateTensor<float>(model.input2(), {0.5, -2.7, 3.1, -3.2});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear(
|
|
{0.5477226, 11.869653, 0.33098164, 0.003606}, 1e-3)));
|
|
}
|
|
|
|
TEST(PowOpModel, BroadcastTest) {
|
|
PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1}}, {TensorType_INT32, {}});
|
|
model.PopulateTensor<int32_t>(model.input1(), {12, 2, 7, 8});
|
|
model.PopulateTensor<int32_t>(model.input2(), {4});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAre(20736, 16, 2401, 4096));
|
|
}
|
|
|
|
TEST(PowOpModel, BroadcastFloatTest) {
|
|
PowOpModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {1}}, {TensorType_FLOAT32, {}});
|
|
model.PopulateTensor<float>(model.input1(), {12, 2, 7, 8});
|
|
model.PopulateTensor<float>(model.input2(), {4});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAre(20736, 16, 2401, 4096));
|
|
}
|
|
|
|
template <typename T>
|
|
void CalculateTrueResults(const std::vector<T>& input_data, T exponent,
|
|
int flat_size, std::vector<T>* output_data) {
|
|
for (int i = 0; i < flat_size; ++i) {
|
|
output_data->at(i) = std::pow(input_data[i], exponent);
|
|
}
|
|
}
|
|
|
|
TEST(PowOpModel, FloatSingleIntegerExponentTest) {
|
|
PowOpModel<float> model({TensorType_FLOAT32, {1, 2, 2, 1}},
|
|
{TensorType_FLOAT32, {1}}, {TensorType_FLOAT32, {}});
|
|
const int input_size = 1 * 2 * 2 * 1;
|
|
for (int i = 1; i < 20; ++i) {
|
|
std::vector<float> input_data(input_size);
|
|
for (int index = 0; index < input_size; ++index) {
|
|
// For exponent is float case, if base < 0, we will result in nan, so
|
|
// we only populate positive base.
|
|
input_data[index] = UniformRandomFloat(0, 1.5);
|
|
}
|
|
model.PopulateTensor<float>(model.input1(), input_data);
|
|
float exponent = static_cast<float>(i);
|
|
// Random deviate exponent, e.g., 1.99999 or 2.00001.
|
|
exponent += UniformRandomInt(-1, 1) * 1e-5;
|
|
model.PopulateTensor<float>(model.input2(), {exponent});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
|
|
std::vector<float> output_data(input_size);
|
|
CalculateTrueResults(input_data, exponent, input_size, &output_data);
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear(output_data, 1e-2)));
|
|
}
|
|
}
|
|
|
|
TEST(PowOpModel, IntSingleIntegerExponentTest) {
|
|
PowOpModel<int32_t> model({TensorType_INT32, {1, 2, 2, 1}},
|
|
{TensorType_INT32, {1}}, {TensorType_INT32, {}});
|
|
const int input_size = 1 * 2 * 2 * 1;
|
|
for (int i = 1; i < 20; ++i) {
|
|
std::vector<int32_t> input_data(input_size);
|
|
for (int index = 0; index < input_size; ++index) {
|
|
input_data[index] = UniformRandomInt(-2, -2);
|
|
}
|
|
model.PopulateTensor<int32_t>(model.input1(), input_data);
|
|
int exponent = i;
|
|
model.PopulateTensor<int32_t>(model.input2(), {exponent});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAre(1, 2, 2, 1));
|
|
std::vector<int32_t> output_data(input_size);
|
|
CalculateTrueResults(input_data, exponent, input_size, &output_data);
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray(output_data));
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|