149 lines
4.8 KiB
C++
149 lines
4.8 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace pow {
|
|
namespace {
|
|
|
|
// Input/output tensor index.
|
|
constexpr int kInputTensor1 = 0;
|
|
constexpr int kInputTensor2 = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
// Op data for pow op.
|
|
struct OpData {
|
|
bool requires_broadcast;
|
|
};
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
auto* data = new OpData;
|
|
data->requires_broadcast = false;
|
|
return data;
|
|
}
|
|
|
|
void Free(TfLiteContext* context, void* buffer) {
|
|
delete reinterpret_cast<OpData*>(buffer);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
|
|
|
|
const TfLiteType type = input1->type;
|
|
if (type != kTfLiteInt32 && type != kTfLiteFloat32) {
|
|
TF_LITE_KERNEL_LOG(context, "Unsupported data type %s.",
|
|
TfLiteTypeGetName(type));
|
|
return kTfLiteError;
|
|
}
|
|
output->type = type;
|
|
|
|
data->requires_broadcast = !HaveSameShapes(input1, input2);
|
|
|
|
TfLiteIntArray* output_size = nullptr;
|
|
if (data->requires_broadcast) {
|
|
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
|
|
context, input1, input2, &output_size));
|
|
} else {
|
|
output_size = TfLiteIntArrayCopy(input1->dims);
|
|
}
|
|
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
template <typename T>
|
|
void PowImpl(const TfLiteTensor* input1, const TfLiteTensor* input2,
|
|
TfLiteTensor* output, bool requires_broadcast) {
|
|
if (requires_broadcast) {
|
|
optimized_ops::BroadcastPow4D(
|
|
GetTensorShape(input1), GetTensorData<T>(input1),
|
|
GetTensorShape(input2), GetTensorData<T>(input2),
|
|
GetTensorShape(output), GetTensorData<T>(output));
|
|
} else {
|
|
reference_ops::Pow(GetTensorShape(input1), GetTensorData<T>(input1),
|
|
GetTensorShape(input2), GetTensorData<T>(input2),
|
|
GetTensorShape(output), GetTensorData<T>(output));
|
|
}
|
|
}
|
|
|
|
TfLiteStatus CheckValue(TfLiteContext* context, const TfLiteTensor* input) {
|
|
const int64_t num_elements = NumElements(input);
|
|
const int32_t* data = GetTensorData<int32_t>(input);
|
|
for (int i = 0; i < num_elements; ++i) {
|
|
if (data[i] < 0) {
|
|
context->ReportError(context,
|
|
"POW does not support negative value for int32.");
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
switch (output->type) {
|
|
case kTfLiteInt32: {
|
|
// TensorFlow does not support negative for int32.
|
|
TF_LITE_ENSURE_OK(context, CheckValue(context, input2));
|
|
PowImpl<int32_t>(input1, input2, output, data->requires_broadcast);
|
|
break;
|
|
}
|
|
case kTfLiteFloat32: {
|
|
PowImpl<float>(input1, input2, output, data->requires_broadcast);
|
|
break;
|
|
}
|
|
default: {
|
|
context->ReportError(context, "Unsupported data type: %d", output->type);
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace pow
|
|
|
|
TfLiteRegistration* Register_POW() {
|
|
static TfLiteRegistration r = {pow::Init, pow::Free, pow::Prepare, pow::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|