STT-tensorflow/tensorflow/lite/kernels/mul.cc

315 lines
12 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/optimized/integer_ops/mul.h"
#include <stddef.h>
#include <stdint.h>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/optimized/cpu_check.h"
#include "tensorflow/lite/kernels/internal/optimized/neon_check.h"
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/mul.h"
#include "tensorflow/lite/kernels/internal/reference/mul.h"
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace mul {
// This file has three implementation of Mul.
enum KernelType {
kReference,
kGenericOptimized, // Neon-free
kNeonOptimized,
};
constexpr int kInputTensor1 = 0;
constexpr int kInputTensor2 = 1;
constexpr int kOutputTensor = 0;
struct OpData {
// Parameters used in the quantized paths where the output is 8bit
int32 output_activation_min;
int32 output_activation_max;
// Parameters used in all quantized paths
int32_t output_multiplier;
int output_shift;
};
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
auto* data = new OpData;
return data;
}
void Free(TfLiteContext* context, void* buffer) {
delete reinterpret_cast<OpData*>(buffer);
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
OpData* data = reinterpret_cast<OpData*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
const bool requires_broadcast = !HaveSameShapes(input1, input2);
TfLiteIntArray* output_size = nullptr;
if (requires_broadcast) {
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
context, input1, input2, &output_size));
} else {
output_size = TfLiteIntArrayCopy(input1->dims);
}
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
output->type == kTfLiteInt16) {
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
context, params->activation, output, &data->output_activation_min,
&data->output_activation_max));
double real_multiplier =
input1->params.scale * input2->params.scale / output->params.scale;
QuantizeMultiplier(real_multiplier, &data->output_multiplier,
&data->output_shift);
}
return context->ResizeTensor(context, output, output_size);
}
template <KernelType kernel_type>
void EvalMul(TfLiteContext* context, TfLiteNode* node, TfLiteMulParams* params,
const OpData* data, const TfLiteTensor* input1,
const TfLiteTensor* input2, TfLiteTensor* output) {
tflite::ArithmeticParams op_params;
const bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
GetTensorShape(input1), GetTensorShape(input2), &op_params);
#define TF_LITE_MUL(type, opname, data_type) \
data_type output_activation_min, output_activation_max; \
CalculateActivationRange(params->activation, &output_activation_min, \
&output_activation_max); \
SetActivationParams(output_activation_min, output_activation_max, \
&op_params); \
type::opname(op_params, GetTensorShape(input1), \
GetTensorData<data_type>(input1), GetTensorShape(input2), \
GetTensorData<data_type>(input2), GetTensorShape(output), \
GetTensorData<data_type>(output))
if (output->type == kTfLiteInt32) {
if (kernel_type == kReference) {
if (need_broadcast) {
TF_LITE_MUL(reference_ops, BroadcastMul4DSlow, int32_t);
} else {
TF_LITE_MUL(reference_ops, Mul, int32_t);
}
} else {
if (need_broadcast) {
TF_LITE_MUL(optimized_ops, BroadcastMul4DSlow, int32_t);
} else {
TF_LITE_MUL(optimized_ops, Mul, int32_t);
}
}
} else if (output->type == kTfLiteFloat32) {
if (kernel_type == kReference) {
if (need_broadcast) {
TF_LITE_MUL(reference_ops, BroadcastMul4DSlow, float);
} else {
TF_LITE_MUL(reference_ops, Mul, float);
}
} else {
if (need_broadcast) {
TF_LITE_MUL(optimized_ops, BroadcastMulDispatch, float);
} else {
TF_LITE_MUL(optimized_ops, Mul, float);
}
}
}
#undef TF_LITE_MUL
}
template <KernelType kernel_type>
TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteMulParams* params, const OpData* data,
const TfLiteTensor* input1,
const TfLiteTensor* input2, TfLiteTensor* output) {
if (input1->type == input2->type && input1->type == output->type &&
(input1->type == kTfLiteUInt8 || input1->type == kTfLiteInt8 ||
input1->type == kTfLiteInt16)) {
tflite::ArithmeticParams op_params;
SetActivationParams(data->output_activation_min,
data->output_activation_max, &op_params);
op_params.input1_offset = -input1->params.zero_point;
op_params.input2_offset = -input2->params.zero_point;
op_params.output_offset = output->params.zero_point;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = data->output_shift;
bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
GetTensorShape(input1), GetTensorShape(input2), &op_params);
#define TF_LITE_MUL(type, opname, dtype) \
type::opname(op_params, GetTensorShape(input1), \
GetTensorData<dtype>(input1), GetTensorShape(input2), \
GetTensorData<dtype>(input2), GetTensorShape(output), \
GetTensorData<dtype>(output))
if (input1->type == kTfLiteInt8) {
if (kernel_type == kReference) {
if (need_broadcast) {
TF_LITE_MUL(reference_integer_ops, BroadcastMul4DSlow, int8_t);
} else {
TF_LITE_MUL(reference_integer_ops, Mul, int8_t);
}
} else {
if (need_broadcast) {
TF_LITE_MUL(optimized_integer_ops, BroadcastMulDispatch, int8_t);
} else {
TF_LITE_MUL(optimized_integer_ops, Mul, int8_t);
}
}
} else if (input1->type == kTfLiteInt16) {
// We have this check, because in case of int16
// input1_val*input2_val can overflow int32:
// see MulElementwise -
// tensorflow/lite/kernels/internal/reference/integer_ops/mul.h in case of
// 16-bit this function is used in symmetric quantization, so offset
// should be zero.
TF_LITE_ENSURE_EQ(context, op_params.input1_offset, 0.0);
TF_LITE_ENSURE_EQ(context, op_params.input2_offset, 0.0);
TF_LITE_ENSURE_EQ(context, op_params.output_offset, 0.0);
if (need_broadcast) {
TF_LITE_MUL(reference_integer_ops, BroadcastMul4DSlow, int16_t);
} else {
TF_LITE_MUL(reference_integer_ops, Mul, int16_t);
}
} else {
// type == kTfLiteUInt8
if (kernel_type == kReference) {
if (need_broadcast) {
TF_LITE_MUL(reference_ops, BroadcastMul4DSlow, uint8_t);
} else {
TF_LITE_MUL(reference_ops, Mul, uint8_t);
}
} else {
if (need_broadcast) {
TF_LITE_MUL(optimized_ops, BroadcastMulDispatch, uint8_t);
} else {
TF_LITE_MUL(optimized_ops, Mul, uint8_t);
}
}
}
#undef TF_LITE_MUL
} else if (input1->type == kTfLiteInt16 && input2->type == kTfLiteInt16 &&
(output->type == kTfLiteUInt8 || output->type == kTfLiteInt8)) {
#define TF_LITE_MUL(type, opname, output_dtype) \
tflite::ArithmeticParams op_params; \
SetActivationParams(data->output_activation_min, \
data->output_activation_max, &op_params); \
op_params.output_offset = output->params.zero_point; \
type::opname(op_params, GetTensorShape(input1), \
GetTensorData<int16_t>(input1), GetTensorShape(input2), \
GetTensorData<int16_t>(input2), GetTensorShape(output), \
GetTensorData<output_dtype>(output))
if (output->type == kTfLiteInt8) {
TF_LITE_MUL(reference_integer_ops, Mul, int8_t);
} else {
if (kernel_type == kReference) {
TF_LITE_MUL(reference_ops, Mul, uint8_t);
} else {
TF_LITE_MUL(optimized_ops, Mul, uint8_t);
}
}
#undef TF_LITE_MUL
} else {
context->ReportError(
context, "Unsupported combination of input and output types in Mul.");
return kTfLiteError;
}
return kTfLiteOk;
}
template <KernelType kernel_type>
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
OpData* data = reinterpret_cast<OpData*>(node->user_data);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) {
EvalMul<kernel_type>(context, node, params, data, input1, input2, output);
} else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
output->type == kTfLiteInt16) {
TF_LITE_ENSURE_OK(
context, EvalQuantized<kernel_type>(context, node, params, data, input1,
input2, output));
} else {
context->ReportError(context,
"Mul only supports FLOAT32, INT32 and quantized UINT8,"
" INT8 and INT16 now, got %d.",
output->type);
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace mul
TfLiteRegistration* Register_MUL_REF() {
static TfLiteRegistration r = {mul::Init, mul::Free, mul::Prepare,
mul::Eval<mul::kReference>};
return &r;
}
TfLiteRegistration* Register_MUL_GENERIC_OPT() {
static TfLiteRegistration r = {mul::Init, mul::Free, mul::Prepare,
mul::Eval<mul::kGenericOptimized>};
return &r;
}
TfLiteRegistration* Register_MUL_NEON_OPT() {
static TfLiteRegistration r = {mul::Init, mul::Free, mul::Prepare,
mul::Eval<mul::kNeonOptimized>};
return &r;
}
TfLiteRegistration* Register_MUL() {
#ifdef USE_NEON
return Register_MUL_NEON_OPT();
#else
return Register_MUL_GENERIC_OPT();
#endif
}
} // namespace builtin
} // namespace ops
} // namespace tflite