315 lines
12 KiB
C++
315 lines
12 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/optimized/integer_ops/mul.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/cpu_check.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/neon_check.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/mul.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/mul.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace mul {
|
|
|
|
// This file has three implementation of Mul.
|
|
enum KernelType {
|
|
kReference,
|
|
kGenericOptimized, // Neon-free
|
|
kNeonOptimized,
|
|
};
|
|
|
|
constexpr int kInputTensor1 = 0;
|
|
constexpr int kInputTensor2 = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct OpData {
|
|
// Parameters used in the quantized paths where the output is 8bit
|
|
int32 output_activation_min;
|
|
int32 output_activation_max;
|
|
|
|
// Parameters used in all quantized paths
|
|
int32_t output_multiplier;
|
|
int output_shift;
|
|
};
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
auto* data = new OpData;
|
|
return data;
|
|
}
|
|
|
|
void Free(TfLiteContext* context, void* buffer) {
|
|
delete reinterpret_cast<OpData*>(buffer);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
|
|
|
|
const bool requires_broadcast = !HaveSameShapes(input1, input2);
|
|
|
|
TfLiteIntArray* output_size = nullptr;
|
|
if (requires_broadcast) {
|
|
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
|
|
context, input1, input2, &output_size));
|
|
} else {
|
|
output_size = TfLiteIntArrayCopy(input1->dims);
|
|
}
|
|
|
|
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
|
|
output->type == kTfLiteInt16) {
|
|
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
|
context, params->activation, output, &data->output_activation_min,
|
|
&data->output_activation_max));
|
|
double real_multiplier =
|
|
input1->params.scale * input2->params.scale / output->params.scale;
|
|
QuantizeMultiplier(real_multiplier, &data->output_multiplier,
|
|
&data->output_shift);
|
|
}
|
|
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void EvalMul(TfLiteContext* context, TfLiteNode* node, TfLiteMulParams* params,
|
|
const OpData* data, const TfLiteTensor* input1,
|
|
const TfLiteTensor* input2, TfLiteTensor* output) {
|
|
tflite::ArithmeticParams op_params;
|
|
const bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
|
|
GetTensorShape(input1), GetTensorShape(input2), &op_params);
|
|
#define TF_LITE_MUL(type, opname, data_type) \
|
|
data_type output_activation_min, output_activation_max; \
|
|
CalculateActivationRange(params->activation, &output_activation_min, \
|
|
&output_activation_max); \
|
|
SetActivationParams(output_activation_min, output_activation_max, \
|
|
&op_params); \
|
|
type::opname(op_params, GetTensorShape(input1), \
|
|
GetTensorData<data_type>(input1), GetTensorShape(input2), \
|
|
GetTensorData<data_type>(input2), GetTensorShape(output), \
|
|
GetTensorData<data_type>(output))
|
|
|
|
if (output->type == kTfLiteInt32) {
|
|
if (kernel_type == kReference) {
|
|
if (need_broadcast) {
|
|
TF_LITE_MUL(reference_ops, BroadcastMul4DSlow, int32_t);
|
|
} else {
|
|
TF_LITE_MUL(reference_ops, Mul, int32_t);
|
|
}
|
|
} else {
|
|
if (need_broadcast) {
|
|
TF_LITE_MUL(optimized_ops, BroadcastMul4DSlow, int32_t);
|
|
} else {
|
|
TF_LITE_MUL(optimized_ops, Mul, int32_t);
|
|
}
|
|
}
|
|
} else if (output->type == kTfLiteFloat32) {
|
|
if (kernel_type == kReference) {
|
|
if (need_broadcast) {
|
|
TF_LITE_MUL(reference_ops, BroadcastMul4DSlow, float);
|
|
} else {
|
|
TF_LITE_MUL(reference_ops, Mul, float);
|
|
}
|
|
} else {
|
|
if (need_broadcast) {
|
|
TF_LITE_MUL(optimized_ops, BroadcastMulDispatch, float);
|
|
} else {
|
|
TF_LITE_MUL(optimized_ops, Mul, float);
|
|
}
|
|
}
|
|
}
|
|
#undef TF_LITE_MUL
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteMulParams* params, const OpData* data,
|
|
const TfLiteTensor* input1,
|
|
const TfLiteTensor* input2, TfLiteTensor* output) {
|
|
if (input1->type == input2->type && input1->type == output->type &&
|
|
(input1->type == kTfLiteUInt8 || input1->type == kTfLiteInt8 ||
|
|
input1->type == kTfLiteInt16)) {
|
|
tflite::ArithmeticParams op_params;
|
|
SetActivationParams(data->output_activation_min,
|
|
data->output_activation_max, &op_params);
|
|
op_params.input1_offset = -input1->params.zero_point;
|
|
op_params.input2_offset = -input2->params.zero_point;
|
|
op_params.output_offset = output->params.zero_point;
|
|
op_params.output_multiplier = data->output_multiplier;
|
|
op_params.output_shift = data->output_shift;
|
|
bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
|
|
GetTensorShape(input1), GetTensorShape(input2), &op_params);
|
|
#define TF_LITE_MUL(type, opname, dtype) \
|
|
type::opname(op_params, GetTensorShape(input1), \
|
|
GetTensorData<dtype>(input1), GetTensorShape(input2), \
|
|
GetTensorData<dtype>(input2), GetTensorShape(output), \
|
|
GetTensorData<dtype>(output))
|
|
if (input1->type == kTfLiteInt8) {
|
|
if (kernel_type == kReference) {
|
|
if (need_broadcast) {
|
|
TF_LITE_MUL(reference_integer_ops, BroadcastMul4DSlow, int8_t);
|
|
} else {
|
|
TF_LITE_MUL(reference_integer_ops, Mul, int8_t);
|
|
}
|
|
} else {
|
|
if (need_broadcast) {
|
|
TF_LITE_MUL(optimized_integer_ops, BroadcastMulDispatch, int8_t);
|
|
} else {
|
|
TF_LITE_MUL(optimized_integer_ops, Mul, int8_t);
|
|
}
|
|
}
|
|
} else if (input1->type == kTfLiteInt16) {
|
|
// We have this check, because in case of int16
|
|
// input1_val*input2_val can overflow int32:
|
|
// see MulElementwise -
|
|
// tensorflow/lite/kernels/internal/reference/integer_ops/mul.h in case of
|
|
// 16-bit this function is used in symmetric quantization, so offset
|
|
// should be zero.
|
|
TF_LITE_ENSURE_EQ(context, op_params.input1_offset, 0.0);
|
|
TF_LITE_ENSURE_EQ(context, op_params.input2_offset, 0.0);
|
|
TF_LITE_ENSURE_EQ(context, op_params.output_offset, 0.0);
|
|
|
|
if (need_broadcast) {
|
|
TF_LITE_MUL(reference_integer_ops, BroadcastMul4DSlow, int16_t);
|
|
} else {
|
|
TF_LITE_MUL(reference_integer_ops, Mul, int16_t);
|
|
}
|
|
} else {
|
|
// type == kTfLiteUInt8
|
|
if (kernel_type == kReference) {
|
|
if (need_broadcast) {
|
|
TF_LITE_MUL(reference_ops, BroadcastMul4DSlow, uint8_t);
|
|
} else {
|
|
TF_LITE_MUL(reference_ops, Mul, uint8_t);
|
|
}
|
|
} else {
|
|
if (need_broadcast) {
|
|
TF_LITE_MUL(optimized_ops, BroadcastMulDispatch, uint8_t);
|
|
} else {
|
|
TF_LITE_MUL(optimized_ops, Mul, uint8_t);
|
|
}
|
|
}
|
|
}
|
|
#undef TF_LITE_MUL
|
|
} else if (input1->type == kTfLiteInt16 && input2->type == kTfLiteInt16 &&
|
|
(output->type == kTfLiteUInt8 || output->type == kTfLiteInt8)) {
|
|
#define TF_LITE_MUL(type, opname, output_dtype) \
|
|
tflite::ArithmeticParams op_params; \
|
|
SetActivationParams(data->output_activation_min, \
|
|
data->output_activation_max, &op_params); \
|
|
op_params.output_offset = output->params.zero_point; \
|
|
type::opname(op_params, GetTensorShape(input1), \
|
|
GetTensorData<int16_t>(input1), GetTensorShape(input2), \
|
|
GetTensorData<int16_t>(input2), GetTensorShape(output), \
|
|
GetTensorData<output_dtype>(output))
|
|
if (output->type == kTfLiteInt8) {
|
|
TF_LITE_MUL(reference_integer_ops, Mul, int8_t);
|
|
} else {
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_MUL(reference_ops, Mul, uint8_t);
|
|
} else {
|
|
TF_LITE_MUL(optimized_ops, Mul, uint8_t);
|
|
}
|
|
}
|
|
#undef TF_LITE_MUL
|
|
} else {
|
|
context->ReportError(
|
|
context, "Unsupported combination of input and output types in Mul.");
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) {
|
|
EvalMul<kernel_type>(context, node, params, data, input1, input2, output);
|
|
} else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
|
|
output->type == kTfLiteInt16) {
|
|
TF_LITE_ENSURE_OK(
|
|
context, EvalQuantized<kernel_type>(context, node, params, data, input1,
|
|
input2, output));
|
|
} else {
|
|
context->ReportError(context,
|
|
"Mul only supports FLOAT32, INT32 and quantized UINT8,"
|
|
" INT8 and INT16 now, got %d.",
|
|
output->type);
|
|
return kTfLiteError;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace mul
|
|
|
|
TfLiteRegistration* Register_MUL_REF() {
|
|
static TfLiteRegistration r = {mul::Init, mul::Free, mul::Prepare,
|
|
mul::Eval<mul::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_MUL_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {mul::Init, mul::Free, mul::Prepare,
|
|
mul::Eval<mul::kGenericOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_MUL_NEON_OPT() {
|
|
static TfLiteRegistration r = {mul::Init, mul::Free, mul::Prepare,
|
|
mul::Eval<mul::kNeonOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_MUL() {
|
|
#ifdef USE_NEON
|
|
return Register_MUL_NEON_OPT();
|
|
#else
|
|
return Register_MUL_GENERIC_OPT();
|
|
#endif
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|