620 lines
26 KiB
C++
620 lines
26 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/optimized/integer_ops/depthwise_conv.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <vector>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/cpu_backend_context.h"
|
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/cpu_check.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/depthwiseconv_multithread.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/integer_ops/depthwise_conv_hybrid.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/neon_check.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_utils.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/padding.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace depthwise_conv {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kFilterTensor = 1;
|
|
constexpr int kBiasTensor = 2;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
// This file has three implementation of DepthwiseConv.
|
|
enum KernelType {
|
|
kReference,
|
|
kGenericOptimized, // Neon-free
|
|
kNeonOptimized,
|
|
};
|
|
|
|
const int kTensorNotAllocated = -1;
|
|
|
|
struct OpData {
|
|
TfLitePaddingValues padding;
|
|
// The scaling factor from input to output (aka the 'real multiplier') can
|
|
// be represented as a fixed point multiplier plus a left shift.
|
|
int32_t output_multiplier;
|
|
int output_shift;
|
|
// The range of the fused activation layer. For example for kNone and
|
|
// uint8_t these would be 0 and 255.
|
|
int32_t output_activation_min;
|
|
int32_t output_activation_max;
|
|
|
|
// Per channel output multiplier and shift.
|
|
std::vector<int32_t> per_channel_output_multiplier;
|
|
std::vector<int> per_channel_output_shift;
|
|
|
|
// Hybrid per channel temporary tensors.
|
|
int input_quantized_id = kTensorNotAllocated;
|
|
int scaling_factors_id = kTensorNotAllocated;
|
|
int input_offset_id = kTensorNotAllocated;
|
|
int32_t input_quantized_index;
|
|
int32_t scaling_factors_index;
|
|
int32_t input_offset_index;
|
|
};
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
// This is a builtin op, so we don't use the contents in 'buffer', if any.
|
|
// Instead, we allocate a new object to carry information from Prepare() to
|
|
// Eval().
|
|
return new OpData;
|
|
}
|
|
|
|
void Free(TfLiteContext* context, void* buffer) {
|
|
delete reinterpret_cast<OpData*>(buffer);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
// TODO(ahentz): use could use GetOptionalInputTensor() here, but we need to
|
|
// decide whether we are OK with optional tensors being completely absent, as
|
|
// opposed to having -1 as their index.
|
|
bool hasBias = NumInputs(node) == 3;
|
|
|
|
TF_LITE_ENSURE(context, hasBias || NumInputs(node) == 2);
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
|
const TfLiteTensor* bias = nullptr;
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(filter), 4);
|
|
|
|
const TfLiteType data_type = input->type;
|
|
|
|
const TfLiteType filter_type = filter->type;
|
|
const bool is_hybrid =
|
|
data_type == kTfLiteFloat32 && filter_type == kTfLiteInt8;
|
|
TF_LITE_ENSURE(context,
|
|
data_type == kTfLiteFloat32 || data_type == kTfLiteUInt8 ||
|
|
data_type == kTfLiteInt8 || data_type == kTfLiteInt16);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, output->type, data_type);
|
|
if (!is_hybrid) {
|
|
TF_LITE_ENSURE(context,
|
|
filter->type == data_type || data_type == kTfLiteInt16);
|
|
}
|
|
|
|
// Filter in DepthwiseConv is expected to be [1, H, W, O].
|
|
TF_LITE_ENSURE_EQ(context, SizeOfDimension(filter, 0), 1);
|
|
|
|
if (hasBias) {
|
|
bias = GetInput(context, node, kBiasTensor);
|
|
if (data_type == kTfLiteUInt8 || data_type == kTfLiteInt8) {
|
|
TF_LITE_ENSURE_TYPES_EQ(context, bias->type, kTfLiteInt32);
|
|
TF_LITE_ENSURE_EQ(context, bias->params.zero_point, 0);
|
|
} else if (data_type == kTfLiteInt16) {
|
|
TF_LITE_ENSURE_TYPES_EQ(context, bias->type, kTfLiteInt64);
|
|
TF_LITE_ENSURE_EQ(context, bias->params.zero_point, 0);
|
|
TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0);
|
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
|
|
} else {
|
|
TF_LITE_ENSURE_TYPES_EQ(context, bias->type, data_type);
|
|
}
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(bias), 1);
|
|
TF_LITE_ENSURE_EQ(context, SizeOfDimension(filter, 3),
|
|
SizeOfDimension(bias, 0));
|
|
}
|
|
|
|
int channels_out = SizeOfDimension(filter, 3);
|
|
int width = SizeOfDimension(input, 2);
|
|
int height = SizeOfDimension(input, 1);
|
|
int filter_width = SizeOfDimension(filter, 2);
|
|
int filter_height = SizeOfDimension(filter, 1);
|
|
int batches = SizeOfDimension(input, 0);
|
|
|
|
// Matching GetWindowedOutputSize in TensorFlow.
|
|
auto padding = params->padding;
|
|
int out_width, out_height;
|
|
|
|
data->padding = ComputePaddingHeightWidth(
|
|
params->stride_height, params->stride_width,
|
|
params->dilation_height_factor, params->dilation_width_factor, height,
|
|
width, filter_height, filter_width, padding, &out_height, &out_width);
|
|
|
|
// Note that quantized inference requires that all tensors have their
|
|
// parameters set. This is usually done during quantized training or
|
|
// calibration.
|
|
if (data_type != kTfLiteFloat32) {
|
|
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
|
kTfLiteAffineQuantization);
|
|
const auto* affine_quantization =
|
|
reinterpret_cast<TfLiteAffineQuantization*>(
|
|
filter->quantization.params);
|
|
TF_LITE_ENSURE(context, affine_quantization);
|
|
TF_LITE_ENSURE(context, affine_quantization->scale);
|
|
TF_LITE_ENSURE(context, (affine_quantization->scale->size == 1 ||
|
|
affine_quantization->scale->size == channels_out));
|
|
|
|
data->per_channel_output_multiplier.resize(channels_out);
|
|
data->per_channel_output_shift.resize(channels_out);
|
|
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
|
|
context, input, filter, bias, output, params->activation,
|
|
&data->output_multiplier, &data->output_shift,
|
|
&data->output_activation_min, &data->output_activation_max,
|
|
data->per_channel_output_multiplier.data(),
|
|
data->per_channel_output_shift.data(), channels_out));
|
|
}
|
|
|
|
if (is_hybrid) {
|
|
const auto* affine_quantization =
|
|
reinterpret_cast<TfLiteAffineQuantization*>(
|
|
filter->quantization.params);
|
|
TF_LITE_ENSURE(context, affine_quantization);
|
|
TF_LITE_ENSURE(context, affine_quantization->scale);
|
|
TF_LITE_ENSURE_EQ(
|
|
context, affine_quantization->scale->size,
|
|
filter->dims->data[affine_quantization->quantized_dimension]);
|
|
|
|
int temporaries_count = 0;
|
|
data->input_quantized_index = temporaries_count;
|
|
if (data->input_quantized_id == kTensorNotAllocated) {
|
|
TF_LITE_ENSURE_OK(
|
|
context, context->AddTensors(context, 1, &data->input_quantized_id));
|
|
}
|
|
++temporaries_count;
|
|
data->scaling_factors_index = temporaries_count;
|
|
if (data->scaling_factors_id == kTensorNotAllocated) {
|
|
TF_LITE_ENSURE_OK(
|
|
context, context->AddTensors(context, 1, &data->scaling_factors_id));
|
|
}
|
|
++temporaries_count;
|
|
data->input_offset_index = temporaries_count;
|
|
if (data->input_offset_id == kTensorNotAllocated) {
|
|
TF_LITE_ENSURE_OK(
|
|
context, context->AddTensors(context, 1, &data->input_offset_id));
|
|
}
|
|
++temporaries_count;
|
|
|
|
TfLiteIntArrayFree(node->temporaries);
|
|
node->temporaries = TfLiteIntArrayCreate(temporaries_count);
|
|
|
|
node->temporaries->data[data->input_quantized_index] =
|
|
data->input_quantized_id;
|
|
TfLiteTensor* input_quantized =
|
|
GetTemporary(context, node, data->input_quantized_index);
|
|
input_quantized->type = kTfLiteInt8;
|
|
input_quantized->allocation_type = kTfLiteArenaRw;
|
|
if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) {
|
|
TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims);
|
|
TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized,
|
|
input_quantized_size));
|
|
}
|
|
node->temporaries->data[data->scaling_factors_index] =
|
|
data->scaling_factors_id;
|
|
TfLiteTensor* scaling_factors =
|
|
GetTemporary(context, node, data->scaling_factors_index);
|
|
scaling_factors->type = kTfLiteFloat32;
|
|
scaling_factors->allocation_type = kTfLiteArenaRw;
|
|
const int batch_size = SizeOfDimension(input, 0);
|
|
int scaling_dims[1] = {batch_size};
|
|
if (!TfLiteIntArrayEqualsArray(scaling_factors->dims, 1, scaling_dims)) {
|
|
TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1);
|
|
scaling_factors_size->data[0] = batch_size;
|
|
TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors,
|
|
scaling_factors_size));
|
|
}
|
|
node->temporaries->data[data->input_offset_index] = data->input_offset_id;
|
|
TfLiteTensor* input_offsets =
|
|
GetTemporary(context, node, data->input_offset_index);
|
|
input_offsets->type = kTfLiteInt32;
|
|
input_offsets->allocation_type = kTfLiteArenaRw;
|
|
if (!TfLiteIntArrayEqualsArray(input_offsets->dims, 1, scaling_dims)) {
|
|
TfLiteIntArray* input_offsets_size = TfLiteIntArrayCreate(1);
|
|
input_offsets_size->data[0] = batch_size;
|
|
TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_offsets,
|
|
input_offsets_size));
|
|
}
|
|
}
|
|
|
|
TfLiteIntArray* outputSize = TfLiteIntArrayCreate(4);
|
|
outputSize->data[0] = batches;
|
|
outputSize->data[1] = out_height;
|
|
outputSize->data[2] = out_width;
|
|
outputSize->data[3] = channels_out;
|
|
return context->ResizeTensor(context, output, outputSize);
|
|
}
|
|
|
|
TfLiteStatus ComputeDepthMultiplier(TfLiteContext* context,
|
|
const TfLiteTensor* input,
|
|
const TfLiteTensor* filter,
|
|
int16* depth_multiplier) {
|
|
int num_filter_channels = SizeOfDimension(filter, 3);
|
|
int num_input_channels = SizeOfDimension(input, 3);
|
|
TF_LITE_ENSURE_EQ(context, num_filter_channels % num_input_channels, 0);
|
|
|
|
*depth_multiplier = num_filter_channels / num_input_channels;
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteDepthwiseConvParams* params, OpData* data,
|
|
const TfLiteTensor* input, const TfLiteTensor* filter,
|
|
const TfLiteTensor* bias, TfLiteTensor* output) {
|
|
float output_activation_min, output_activation_max;
|
|
CalculateActivationRange(params->activation, &output_activation_min,
|
|
&output_activation_max);
|
|
|
|
DepthwiseParams op_params;
|
|
op_params.padding_type = PaddingType::kSame;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
|
op_params.float_activation_min = output_activation_min;
|
|
op_params.float_activation_max = output_activation_max;
|
|
TF_LITE_ENSURE_STATUS(ComputeDepthMultiplier(context, input, filter,
|
|
&op_params.depth_multiplier));
|
|
if (kernel_type == kReference) {
|
|
reference_ops::DepthwiseConv(
|
|
op_params, GetTensorShape(input), GetTensorData<float>(input),
|
|
GetTensorShape(filter), GetTensorData<float>(filter),
|
|
GetTensorShape(bias), GetTensorData<float>(bias),
|
|
GetTensorShape(output), GetTensorData<float>(output));
|
|
} else {
|
|
optimized_ops::DepthwiseConv<float, float>(
|
|
op_params, GetTensorShape(input), GetTensorData<float>(input),
|
|
GetTensorShape(filter), GetTensorData<float>(filter),
|
|
GetTensorShape(bias), GetTensorData<float>(bias),
|
|
GetTensorShape(output), GetTensorData<float>(output),
|
|
CpuBackendContext::GetFromContext(context));
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteDepthwiseConvParams* params, OpData* data,
|
|
const TfLiteTensor* input,
|
|
const TfLiteTensor* filter, const TfLiteTensor* bias,
|
|
TfLiteTensor* output) {
|
|
auto input_offset = -input->params.zero_point;
|
|
auto filter_offset = -filter->params.zero_point;
|
|
auto output_offset = output->params.zero_point;
|
|
|
|
DepthwiseParams op_params;
|
|
op_params.padding_type = PaddingType::kSame;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
|
op_params.input_offset = input_offset;
|
|
op_params.weights_offset = filter_offset;
|
|
op_params.output_offset = output_offset;
|
|
op_params.output_multiplier = data->output_multiplier;
|
|
op_params.output_shift = -data->output_shift;
|
|
op_params.quantized_activation_min = data->output_activation_min;
|
|
op_params.quantized_activation_max = data->output_activation_max;
|
|
TF_LITE_ENSURE_STATUS(ComputeDepthMultiplier(context, input, filter,
|
|
&op_params.depth_multiplier));
|
|
if (kernel_type == kReference) {
|
|
reference_ops::DepthwiseConv(
|
|
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
|
|
GetTensorShape(filter), GetTensorData<uint8_t>(filter),
|
|
GetTensorShape(bias), GetTensorData<int32_t>(bias),
|
|
GetTensorShape(output), GetTensorData<uint8_t>(output));
|
|
} else {
|
|
optimized_ops::DepthwiseConv<uint8, int32>(
|
|
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
|
|
GetTensorShape(filter), GetTensorData<uint8_t>(filter),
|
|
GetTensorShape(bias), GetTensorData<int32_t>(bias),
|
|
GetTensorShape(output), GetTensorData<uint8_t>(output),
|
|
CpuBackendContext::GetFromContext(context));
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteDepthwiseConvParams* params,
|
|
OpData* data, const TfLiteTensor* input,
|
|
const TfLiteTensor* filter,
|
|
const TfLiteTensor* bias,
|
|
TfLiteTensor* output) {
|
|
DepthwiseParams op_params;
|
|
op_params.padding_type = PaddingType::kSame;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
|
op_params.input_offset = -input->params.zero_point;
|
|
op_params.weights_offset = 0;
|
|
op_params.output_offset = output->params.zero_point;
|
|
op_params.quantized_activation_min = data->output_activation_min;
|
|
op_params.quantized_activation_max = data->output_activation_max;
|
|
TF_LITE_ENSURE_STATUS(ComputeDepthMultiplier(context, input, filter,
|
|
&op_params.depth_multiplier));
|
|
|
|
if (kernel_type == kReference) {
|
|
reference_integer_ops::DepthwiseConvPerChannel(
|
|
op_params, data->per_channel_output_multiplier.data(),
|
|
data->per_channel_output_shift.data(), GetTensorShape(input),
|
|
GetTensorData<int8>(input), GetTensorShape(filter),
|
|
GetTensorData<int8>(filter), GetTensorShape(bias),
|
|
GetTensorData<int32>(bias), GetTensorShape(output),
|
|
GetTensorData<int8>(output));
|
|
} else {
|
|
optimized_integer_ops::DepthwiseConvPerChannel(
|
|
op_params, data->per_channel_output_multiplier.data(),
|
|
data->per_channel_output_shift.data(), GetTensorShape(input),
|
|
GetTensorData<int8>(input), GetTensorShape(filter),
|
|
GetTensorData<int8>(filter), GetTensorShape(bias),
|
|
GetTensorData<int32>(bias), GetTensorShape(output),
|
|
GetTensorData<int8>(output),
|
|
CpuBackendContext::GetFromContext(context));
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus EvalQuantizedPerChannel16x8(
|
|
const TfLiteDepthwiseConvParams* params, const OpData* data,
|
|
const TfLiteTensor* input, const TfLiteTensor* filter,
|
|
const TfLiteTensor* bias, TfLiteTensor* output) {
|
|
DepthwiseParams op_params;
|
|
op_params.padding_type = PaddingType::kSame;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
|
op_params.depth_multiplier = params->depth_multiplier;
|
|
op_params.weights_offset = 0;
|
|
op_params.quantized_activation_min = data->output_activation_min;
|
|
op_params.quantized_activation_max = data->output_activation_max;
|
|
|
|
reference_integer_ops::DepthwiseConvPerChannel(
|
|
op_params, data->per_channel_output_multiplier.data(),
|
|
data->per_channel_output_shift.data(), GetTensorShape(input),
|
|
GetTensorData<int16>(input), GetTensorShape(filter),
|
|
GetTensorData<int8>(filter), GetTensorShape(bias),
|
|
GetTensorData<std::int64_t>(bias), GetTensorShape(output),
|
|
GetTensorData<int16>(output));
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus EvalHybridPerChannel(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteDepthwiseConvParams* params,
|
|
OpData* data, const TfLiteTensor* input,
|
|
const TfLiteTensor* filter,
|
|
const TfLiteTensor* bias,
|
|
TfLiteTensor* output) {
|
|
float output_activation_min, output_activation_max;
|
|
CalculateActivationRange(params->activation, &output_activation_min,
|
|
&output_activation_max);
|
|
const int input_size = NumElements(input) / SizeOfDimension(input, 0);
|
|
const int batch_size = SizeOfDimension(input, 0);
|
|
const TfLiteTensor* input_quantized =
|
|
GetTemporary(context, node, data->input_quantized_index);
|
|
int8_t* quantized_input_ptr_batch = input_quantized->data.int8;
|
|
float* scaling_factors_ptr = GetTensorData<float>(
|
|
GetTemporary(context, node, data->scaling_factors_index));
|
|
int32_t* input_offset_ptr = GetTensorData<int32_t>(
|
|
GetTemporary(context, node, data->input_offset_index));
|
|
|
|
for (int b = 0; b < batch_size; ++b) {
|
|
const int offset = b * input_size;
|
|
tensor_utils::AsymmetricQuantizeFloats(
|
|
GetTensorData<float>(input) + offset, input_size,
|
|
quantized_input_ptr_batch + offset, &scaling_factors_ptr[b],
|
|
&input_offset_ptr[b]);
|
|
}
|
|
|
|
DepthwiseParams op_params;
|
|
op_params.padding_type = PaddingType::kSame;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.dilation_width_factor = params->dilation_width_factor;
|
|
op_params.dilation_height_factor = params->dilation_height_factor;
|
|
op_params.depth_multiplier = params->depth_multiplier;
|
|
|
|
op_params.weights_offset = 0;
|
|
op_params.float_activation_min = output_activation_min;
|
|
op_params.float_activation_max = output_activation_max;
|
|
const auto* affine_quantization =
|
|
reinterpret_cast<TfLiteAffineQuantization*>(filter->quantization.params);
|
|
if (kernel_type == kReference) {
|
|
reference_integer_ops::DepthwiseConvHybridPerChannel(
|
|
op_params, scaling_factors_ptr, GetTensorShape(input),
|
|
quantized_input_ptr_batch, GetTensorShape(filter),
|
|
GetTensorData<int8>(filter), GetTensorShape(bias),
|
|
GetTensorData<float>(bias), GetTensorShape(output),
|
|
GetTensorData<float>(output), affine_quantization->scale->data,
|
|
input_offset_ptr);
|
|
} else {
|
|
optimized_integer_ops::DepthwiseConvHybridPerChannel(
|
|
op_params, scaling_factors_ptr, GetTensorShape(input),
|
|
quantized_input_ptr_batch, GetTensorShape(filter),
|
|
GetTensorData<int8>(filter), GetTensorShape(bias),
|
|
GetTensorData<float>(bias), GetTensorShape(output),
|
|
GetTensorData<float>(output), affine_quantization->scale->data,
|
|
input_offset_ptr, CpuBackendContext::GetFromContext(context));
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <KernelType kernel_type, TfLiteType input_type>
|
|
TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
|
const TfLiteTensor* bias =
|
|
(NumInputs(node) == 3) ? GetInput(context, node, kBiasTensor) : nullptr;
|
|
TFLITE_DCHECK_EQ(input_type, input->type);
|
|
|
|
switch (input_type) { // Already know in/out types are same.
|
|
case kTfLiteFloat32:
|
|
if (filter->type == kTfLiteFloat32) {
|
|
return EvalFloat<kernel_type>(context, node, params, data, input,
|
|
filter, bias, output);
|
|
} else if (filter->type == kTfLiteInt8) {
|
|
return EvalHybridPerChannel<kernel_type>(context, node, params, data,
|
|
input, filter, bias, output);
|
|
} else {
|
|
TF_LITE_KERNEL_LOG(
|
|
context, "Type %s with filter type %s not currently supported.",
|
|
TfLiteTypeGetName(input->type), TfLiteTypeGetName(filter->type));
|
|
return kTfLiteError;
|
|
}
|
|
break;
|
|
case kTfLiteUInt8:
|
|
return EvalQuantized<kernel_type>(context, node, params, data, input,
|
|
filter, bias, output);
|
|
break;
|
|
case kTfLiteInt8:
|
|
return EvalQuantizedPerChannel<kernel_type>(context, node, params, data,
|
|
input, filter, bias, output);
|
|
break;
|
|
case kTfLiteInt16:
|
|
return EvalQuantizedPerChannel16x8(params, data, input, filter, bias,
|
|
output);
|
|
break;
|
|
default:
|
|
context->ReportError(context, "Type %d not currently supported.",
|
|
input->type);
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
|
|
switch (input->type) { // Already know in/out types are same.
|
|
case kTfLiteFloat32:
|
|
return EvalImpl<kernel_type, kTfLiteFloat32>(context, node);
|
|
case kTfLiteUInt8:
|
|
return EvalImpl<kernel_type, kTfLiteUInt8>(context, node);
|
|
case kTfLiteInt8:
|
|
return EvalImpl<kernel_type, kTfLiteInt8>(context, node);
|
|
case kTfLiteInt16:
|
|
return EvalImpl<kernel_type, kTfLiteInt16>(context, node);
|
|
default:
|
|
context->ReportError(context, "Type %d not currently supported.",
|
|
input->type);
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
|
|
} // namespace depthwise_conv
|
|
|
|
TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_REF() {
|
|
static TfLiteRegistration r = {
|
|
depthwise_conv::Init, depthwise_conv::Free, depthwise_conv::Prepare,
|
|
depthwise_conv::Eval<depthwise_conv::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {
|
|
depthwise_conv::Init, depthwise_conv::Free, depthwise_conv::Prepare,
|
|
depthwise_conv::Eval<depthwise_conv::kGenericOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_NEON_OPT() {
|
|
static TfLiteRegistration r = {
|
|
depthwise_conv::Init, depthwise_conv::Free, depthwise_conv::Prepare,
|
|
depthwise_conv::Eval<depthwise_conv::kNeonOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_DEPTHWISE_CONVOLUTION_NEON_OPT_UINT8() {
|
|
static TfLiteRegistration r = {
|
|
depthwise_conv::Init, depthwise_conv::Free, depthwise_conv::Prepare,
|
|
depthwise_conv::EvalImpl<depthwise_conv::kNeonOptimized, kTfLiteUInt8>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_DEPTHWISE_CONV_2D() {
|
|
#ifdef USE_NEON
|
|
return Register_DEPTHWISE_CONVOLUTION_NEON_OPT();
|
|
#else
|
|
return Register_DEPTHWISE_CONVOLUTION_GENERIC_OPT();
|
|
#endif
|
|
}
|
|
|
|
// Warning: Clients using this variant are responsible for ensuring that their
|
|
// models only need the UINT8 type. TFLite's op registration mechanism doesn't
|
|
// yet allow for more nuanced registration mechanisms.
|
|
TfLiteRegistration* Register_DEPTHWISE_CONV_2D_UINT8() {
|
|
#ifdef USE_NEON
|
|
return Register_DEPTHWISE_CONVOLUTION_NEON_OPT_UINT8();
|
|
#else
|
|
return Register_DEPTHWISE_CONV_2D();
|
|
#endif
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|