209 lines
8.4 KiB
C++
209 lines
8.4 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/reference/concatenation.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace concatenation {
|
|
|
|
// This file has two implementation of Concatenation.
|
|
enum KernelType {
|
|
kReference,
|
|
kGenericOptimized,
|
|
};
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data);
|
|
int axis = params->axis;
|
|
int num_inputs = node->inputs->size;
|
|
|
|
// The number of dimensions of the input tensors must match, and all
|
|
// dimensions except 'axis' must be equal.
|
|
const TfLiteTensor* t0 = GetInput(context, node, 0);
|
|
TfLiteType input_type = t0->type;
|
|
if (axis < 0) axis += t0->dims->size;
|
|
TF_LITE_ENSURE(context, axis >= 0);
|
|
TF_LITE_ENSURE(context, axis < t0->dims->size);
|
|
|
|
// TODO(ahentz): These are limitations of our implementation that could be
|
|
// removed with a bit of effort.
|
|
TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone);
|
|
TF_LITE_ENSURE(context,
|
|
input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8 ||
|
|
input_type == kTfLiteInt8 || input_type == kTfLiteInt16 ||
|
|
input_type == kTfLiteInt32 || input_type == kTfLiteInt64);
|
|
|
|
// Output dimensions will match input dimensions, except 'axis', which
|
|
// will be the sum of inputs
|
|
int sum_axis = t0->dims->data[axis];
|
|
for (int i = 1; i < num_inputs; ++i) {
|
|
const TfLiteTensor* t = GetInput(context, node, i);
|
|
TF_LITE_ENSURE_EQ(context, t->dims->size, t0->dims->size);
|
|
TF_LITE_ENSURE_EQ(context, t->type, input_type);
|
|
for (int d = 0; d < t0->dims->size; ++d) {
|
|
if (d == axis) {
|
|
sum_axis += t->dims->data[axis];
|
|
} else {
|
|
TF_LITE_ENSURE_EQ(context, t->dims->data[d], t0->dims->data[d]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TfLiteIntArray* output_size = TfLiteIntArrayCreate(t0->dims->size);
|
|
for (int d = 0; d < t0->dims->size; ++d) {
|
|
output_size->data[d] = (d == axis) ? sum_axis : t0->dims->data[d];
|
|
}
|
|
|
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input_type);
|
|
|
|
if (input_type == kTfLiteInt8) {
|
|
// Make sure there is no re-scaling needed for Int8 quantized kernel. This
|
|
// is a restriction we introduced to Int8 kernels.
|
|
VectorOfTensors<int8_t> all_inputs(*context, *node->inputs);
|
|
for (int i = 0; i < node->inputs->size; ++i) {
|
|
const TfLiteTensor* t = GetInput(context, node, i);
|
|
TF_LITE_ENSURE_EQ(context, t->params.scale, output->params.scale);
|
|
TF_LITE_ENSURE_EQ(context, t->params.zero_point,
|
|
output->params.zero_point);
|
|
}
|
|
}
|
|
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params =
|
|
reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data);
|
|
int axis = params->axis;
|
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
|
if (axis < 0) axis += output->dims->size;
|
|
|
|
// TODO(ahentz): Creating 'all_inputs' below is not very efficient. We should
|
|
// allocate and populate these during Prepare().
|
|
// TODO(ycling): Activation function parameter is ignored. For now we dont have
|
|
// a model with a Concatenation with fused activation function.
|
|
#define TF_LITE_CONCATENATION(scalar) \
|
|
{ \
|
|
VectorOfTensors<scalar> all_inputs(*context, *node->inputs); \
|
|
tflite::ConcatenationParams op_params; \
|
|
op_params.axis = axis; \
|
|
op_params.inputs_count = node->inputs->size; \
|
|
if (kernel_type == kReference) { \
|
|
reference_ops::Concatenation(op_params, all_inputs.shapes(), \
|
|
all_inputs.data(), GetTensorShape(output), \
|
|
GetTensorData<scalar>(output)); \
|
|
} else { \
|
|
optimized_ops::Concatenation(op_params, all_inputs.shapes(), \
|
|
all_inputs.data(), GetTensorShape(output), \
|
|
GetTensorData<scalar>(output)); \
|
|
} \
|
|
}
|
|
|
|
#define TF_LITE_CONCATENATION_QUANTIZED() \
|
|
{ \
|
|
VectorOfQuantizedTensors all_inputs(*context, *node->inputs); \
|
|
tflite::ConcatenationParams op_params; \
|
|
op_params.axis = axis; \
|
|
op_params.input_zeropoint = all_inputs.zero_point(); \
|
|
op_params.input_scale = all_inputs.scale(); \
|
|
op_params.inputs_count = node->inputs->size; \
|
|
op_params.output_zeropoint = output->params.zero_point; \
|
|
op_params.output_scale = output->params.scale; \
|
|
if (kernel_type == kReference) { \
|
|
reference_ops::ConcatenationWithScaling( \
|
|
op_params, all_inputs.shapes(), all_inputs.data(), \
|
|
GetTensorShape(output), GetTensorData<uint8>(output)); \
|
|
} else { \
|
|
optimized_ops::ConcatenationWithScaling( \
|
|
op_params, all_inputs.shapes(), all_inputs.data(), \
|
|
GetTensorShape(output), GetTensorData<uint8>(output)); \
|
|
} \
|
|
}
|
|
|
|
switch (output->type) { // Already know in/outtypes are same.
|
|
case kTfLiteFloat32:
|
|
TF_LITE_CONCATENATION(float);
|
|
break;
|
|
case kTfLiteInt32:
|
|
TF_LITE_CONCATENATION(int32);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
TF_LITE_CONCATENATION_QUANTIZED();
|
|
break;
|
|
case kTfLiteInt8:
|
|
TF_LITE_CONCATENATION(int8_t);
|
|
break;
|
|
case kTfLiteInt64:
|
|
TF_LITE_CONCATENATION(int64_t);
|
|
break;
|
|
case kTfLiteInt16:
|
|
TF_LITE_CONCATENATION(int16_t);
|
|
break;
|
|
default:
|
|
context->ReportError(context, "Type '%s' is not supported currently.",
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
|
|
#undef TF_LITE_CONCATENATION_QUANTIZED
|
|
#undef TF_LITE_CONCATENATION
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
#undef TF_LITE_MACRO_DISPATCH
|
|
|
|
} // namespace concatenation
|
|
|
|
TfLiteRegistration* Register_CONCATENATION_REF() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, concatenation::Prepare,
|
|
concatenation::Eval<concatenation::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_CONCATENATION_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {
|
|
nullptr, nullptr, concatenation::Prepare,
|
|
concatenation::Eval<concatenation::kGenericOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_CONCATENATION() {
|
|
// TODO(ahentz): It turns out the two versions of Concatenation are almost
|
|
// identical, so we should consider removing one.
|
|
return Register_CONCATENATION_GENERIC_OPT();
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|