365 lines
14 KiB
C++
365 lines
14 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/optimized/integer_ops/add.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/compatibility.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/cpu_check.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/neon_check.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/add.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace add {
|
|
|
|
// This file has three implementation of Add.
|
|
enum KernelType {
|
|
kReference,
|
|
kGenericOptimized, // Neon-free
|
|
kNeonOptimized,
|
|
};
|
|
|
|
constexpr int kInputTensor1 = 0;
|
|
constexpr int kInputTensor2 = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct OpData {
|
|
// These fields are used in both the general 8-bit -> 8bit quantized path,
|
|
// and the special 16-bit -> 16bit quantized path
|
|
int input1_shift;
|
|
int input2_shift;
|
|
int32 output_activation_min;
|
|
int32 output_activation_max;
|
|
|
|
// These fields are used only in the general 8-bit -> 8bit quantized path
|
|
int32 input1_multiplier;
|
|
int32 input2_multiplier;
|
|
int32 output_multiplier;
|
|
int output_shift;
|
|
int left_shift;
|
|
int32 input1_offset;
|
|
int32 input2_offset;
|
|
int32 output_offset;
|
|
};
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
auto* data = new OpData;
|
|
return data;
|
|
}
|
|
|
|
void Free(TfLiteContext* context, void* buffer) {
|
|
delete reinterpret_cast<OpData*>(buffer);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
|
|
output->type = input2->type;
|
|
|
|
const bool requires_broadcast = !HaveSameShapes(input1, input2);
|
|
|
|
TfLiteIntArray* output_size = nullptr;
|
|
if (requires_broadcast) {
|
|
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
|
|
context, input1, input2, &output_size));
|
|
} else {
|
|
output_size = TfLiteIntArrayCopy(input1->dims);
|
|
}
|
|
|
|
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
|
// 8bit -> 8bit general quantized path, with general rescalings
|
|
data->input1_offset = -input1->params.zero_point;
|
|
data->input2_offset = -input2->params.zero_point;
|
|
data->output_offset = output->params.zero_point;
|
|
data->left_shift = 20;
|
|
const double twice_max_input_scale =
|
|
2 * std::max(input1->params.scale, input2->params.scale);
|
|
const double real_input1_multiplier =
|
|
input1->params.scale / twice_max_input_scale;
|
|
const double real_input2_multiplier =
|
|
input2->params.scale / twice_max_input_scale;
|
|
const double real_output_multiplier =
|
|
twice_max_input_scale /
|
|
((1 << data->left_shift) * output->params.scale);
|
|
|
|
QuantizeMultiplierSmallerThanOneExp(
|
|
real_input1_multiplier, &data->input1_multiplier, &data->input1_shift);
|
|
|
|
QuantizeMultiplierSmallerThanOneExp(
|
|
real_input2_multiplier, &data->input2_multiplier, &data->input2_shift);
|
|
|
|
QuantizeMultiplierSmallerThanOneExp(
|
|
real_output_multiplier, &data->output_multiplier, &data->output_shift);
|
|
|
|
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
|
context, params->activation, output, &data->output_activation_min,
|
|
&data->output_activation_max));
|
|
} else if (output->type == kTfLiteInt16) {
|
|
// 16bit -> 16bit special quantized path, supporting only a rather
|
|
// narrow case of quantization parameters: zero_points must all be 0
|
|
// ("symmetric quantization") and scales must be power-of-two (which
|
|
// we abbreviate as "POT" below). The intended use case for this path
|
|
// is in LSTM cells, where, due to the constraints of implementing
|
|
// some of the math in these LSTM cells in fixed-point arithmetic,
|
|
// we need to have such symmetric, power-of-two quantization
|
|
// (Fixed-point formats are inherently symmetric, power-of-two).
|
|
TF_LITE_ENSURE_EQ(context, input1->params.zero_point, 0);
|
|
TF_LITE_ENSURE_EQ(context, input2->params.zero_point, 0);
|
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
|
|
|
|
int input1_scale_log2_rounded;
|
|
bool input1_scale_is_pot =
|
|
CheckedLog2(input1->params.scale, &input1_scale_log2_rounded);
|
|
TF_LITE_ENSURE(context, input1_scale_is_pot);
|
|
|
|
int input2_scale_log2_rounded;
|
|
bool input2_scale_is_pot =
|
|
CheckedLog2(input2->params.scale, &input2_scale_log2_rounded);
|
|
TF_LITE_ENSURE(context, input2_scale_is_pot);
|
|
|
|
int output_scale_log2_rounded;
|
|
bool output_scale_is_pot =
|
|
CheckedLog2(output->params.scale, &output_scale_log2_rounded);
|
|
TF_LITE_ENSURE(context, output_scale_is_pot);
|
|
|
|
data->input1_shift = input1_scale_log2_rounded - output_scale_log2_rounded;
|
|
data->input2_shift = input2_scale_log2_rounded - output_scale_log2_rounded;
|
|
|
|
// Shifting of one input is supported. The graph quantization should ensure
|
|
// that the other input matches the output.
|
|
TF_LITE_ENSURE(context, data->input1_shift == 0 || data->input2_shift == 0);
|
|
TF_LITE_ENSURE(context, data->input1_shift <= 0);
|
|
TF_LITE_ENSURE(context, data->input2_shift <= 0);
|
|
|
|
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
|
context, params->activation, output, &data->output_activation_min,
|
|
&data->output_activation_max));
|
|
}
|
|
|
|
return context->ResizeTensor(context, output, output_size);
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
void EvalAdd(TfLiteContext* context, TfLiteNode* node, TfLiteAddParams* params,
|
|
const OpData* data, const TfLiteTensor* input1,
|
|
const TfLiteTensor* input2, TfLiteTensor* output) {
|
|
tflite::ArithmeticParams op_params;
|
|
const bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
|
|
GetTensorShape(input1), GetTensorShape(input2), &op_params);
|
|
#define TF_LITE_ADD(type, opname, data_type) \
|
|
data_type output_activation_min, output_activation_max; \
|
|
CalculateActivationRange(params->activation, &output_activation_min, \
|
|
&output_activation_max); \
|
|
SetActivationParams(output_activation_min, output_activation_max, \
|
|
&op_params); \
|
|
type::opname(op_params, GetTensorShape(input1), \
|
|
GetTensorData<data_type>(input1), GetTensorShape(input2), \
|
|
GetTensorData<data_type>(input2), GetTensorShape(output), \
|
|
GetTensorData<data_type>(output))
|
|
if (output->type == kTfLiteInt32) {
|
|
if (kernel_type == kReference) {
|
|
if (need_broadcast) {
|
|
TF_LITE_ADD(reference_ops, BroadcastAdd4DSlow, int32_t);
|
|
} else {
|
|
TF_LITE_ADD(reference_ops, Add, int32_t);
|
|
}
|
|
} else {
|
|
if (need_broadcast) {
|
|
TF_LITE_ADD(optimized_ops, BroadcastAdd4DSlow, int32_t);
|
|
} else {
|
|
TF_LITE_ADD(optimized_ops, Add, int32_t);
|
|
}
|
|
}
|
|
} else if (output->type == kTfLiteFloat32) {
|
|
if (kernel_type == kReference) {
|
|
if (need_broadcast) {
|
|
TF_LITE_ADD(reference_ops, BroadcastAdd4DSlow, float);
|
|
} else {
|
|
TF_LITE_ADD(reference_ops, Add, float);
|
|
}
|
|
} else {
|
|
if (need_broadcast) {
|
|
TF_LITE_ADD(optimized_ops, BroadcastAddDispatch, float);
|
|
} else {
|
|
TF_LITE_ADD(optimized_ops, Add, float);
|
|
}
|
|
}
|
|
}
|
|
#undef TF_LITE_ADD
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteAddParams* params, const OpData* data,
|
|
const TfLiteTensor* input1,
|
|
const TfLiteTensor* input2,
|
|
TfLiteTensor* output) {
|
|
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
|
tflite::ArithmeticParams op_params;
|
|
op_params.left_shift = data->left_shift;
|
|
op_params.input1_offset = data->input1_offset;
|
|
op_params.input1_multiplier = data->input1_multiplier;
|
|
op_params.input1_shift = data->input1_shift;
|
|
op_params.input2_offset = data->input2_offset;
|
|
op_params.input2_multiplier = data->input2_multiplier;
|
|
op_params.input2_shift = data->input2_shift;
|
|
op_params.output_offset = data->output_offset;
|
|
op_params.output_multiplier = data->output_multiplier;
|
|
op_params.output_shift = data->output_shift;
|
|
SetActivationParams(data->output_activation_min,
|
|
data->output_activation_max, &op_params);
|
|
bool need_broadcast = optimized_ops::ProcessBroadcastShapes(
|
|
GetTensorShape(input1), GetTensorShape(input2), &op_params);
|
|
#define TF_LITE_ADD(type, opname, dtype) \
|
|
type::opname(op_params, GetTensorShape(input1), \
|
|
GetTensorData<dtype>(input1), GetTensorShape(input2), \
|
|
GetTensorData<dtype>(input2), GetTensorShape(output), \
|
|
GetTensorData<dtype>(output));
|
|
if (output->type == kTfLiteInt8) {
|
|
if (kernel_type == kReference) {
|
|
if (need_broadcast) {
|
|
TF_LITE_ADD(reference_integer_ops, BroadcastAdd4DSlow, int8_t);
|
|
} else {
|
|
TF_LITE_ADD(reference_integer_ops, Add, int8_t);
|
|
}
|
|
} else {
|
|
if (need_broadcast) {
|
|
TF_LITE_ADD(optimized_integer_ops, BroadcastAddDispatch, int8_t);
|
|
} else {
|
|
TF_LITE_ADD(optimized_integer_ops, Add, int8_t);
|
|
}
|
|
}
|
|
} else {
|
|
if (kernel_type == kReference) {
|
|
if (need_broadcast) {
|
|
TF_LITE_ADD(reference_ops, BroadcastAdd4DSlow, uint8_t);
|
|
} else {
|
|
TF_LITE_ADD(reference_ops, Add, uint8_t);
|
|
}
|
|
} else {
|
|
if (need_broadcast) {
|
|
TF_LITE_ADD(optimized_ops, BroadcastAddDispatch, uint8_t);
|
|
} else {
|
|
TF_LITE_ADD(optimized_ops, Add, uint8_t);
|
|
}
|
|
}
|
|
}
|
|
#undef TF_LITE_ADD
|
|
} else if (output->type == kTfLiteInt16) {
|
|
#define TF_LITE_ADD(type, opname) \
|
|
tflite::ArithmeticParams op_params; \
|
|
op_params.input1_shift = data->input1_shift; \
|
|
op_params.input2_shift = data->input2_shift; \
|
|
SetActivationParams(data->output_activation_min, \
|
|
data->output_activation_max, &op_params); \
|
|
type::opname(op_params, GetTensorShape(input1), \
|
|
GetTensorData<int16_t>(input1), GetTensorShape(input2), \
|
|
GetTensorData<int16_t>(input2), GetTensorShape(output), \
|
|
GetTensorData<int16_t>(output))
|
|
// The quantized version of Add doesn't support activations, so we
|
|
// always use BroadcastAdd.
|
|
if (kernel_type == kReference) {
|
|
TF_LITE_ADD(reference_ops, Add);
|
|
} else {
|
|
TF_LITE_ADD(optimized_ops, Add);
|
|
}
|
|
#undef TF_LITE_ADD
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <KernelType kernel_type>
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
|
|
OpData* data = reinterpret_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) {
|
|
EvalAdd<kernel_type>(context, node, params, data, input1, input2, output);
|
|
} else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8 ||
|
|
output->type == kTfLiteInt16) {
|
|
TF_LITE_ENSURE_OK(context,
|
|
EvalAddQuantized<kernel_type>(context, node, params, data,
|
|
input1, input2, output));
|
|
} else {
|
|
context->ReportError(context,
|
|
"Inputs and outputs not all float|uint8|int16 types.");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace add
|
|
|
|
TfLiteRegistration* Register_ADD_REF() {
|
|
static TfLiteRegistration r = {add::Init, add::Free, add::Prepare,
|
|
add::Eval<add::kReference>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_ADD_GENERIC_OPT() {
|
|
static TfLiteRegistration r = {add::Init, add::Free, add::Prepare,
|
|
add::Eval<add::kGenericOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_ADD_NEON_OPT() {
|
|
static TfLiteRegistration r = {add::Init, add::Free, add::Prepare,
|
|
add::Eval<add::kNeonOptimized>};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_ADD() {
|
|
#ifdef USE_NEON
|
|
return Register_ADD_NEON_OPT();
|
|
#else
|
|
return Register_ADD_GENERIC_OPT();
|
|
#endif
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|