This adds new experimental flags to the interpreter options of TFLite Obj-C and Swift APIs, which can be used for opting in to a set of highly optimized floating point kernels provided via the XNNPACK delegate. The flags can be used as follows. Obj-C: TFLInterpreterOptions *options = [[TFLInterpreterOptions alloc] init]; options.useXNNPACK = YES; NSError *error; TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:@"model/path" options:options error:&error]; Swift: var options = InterpreterOptions() options.isXNNPackEnabled = true var interpreter = try Interpreter(modelPath: "model/path", options: options) PiperOrigin-RevId: 317270012 Change-Id: I82aae43c3de13ab08af3c70513e2a458e807b0f1 |
||
---|---|---|
.. | ||
CoreMLDelegate.swift | ||
Delegate.swift | ||
Interpreter.swift | ||
InterpreterError.swift | ||
MetalDelegate.swift | ||
Model.swift | ||
QuantizationParameters.swift | ||
Tensor.swift | ||
TensorFlowLite.swift |