STT-tensorflow/tensorflow/lite/experimental/swift/Sources
YoungSeok Yoon 772433a2a2 Add flag for using optimized TFLite CPU kernels on iOS
This adds new experimental flags to the interpreter options of TFLite Obj-C and
Swift APIs, which can be used for opting in to a set of highly optimized
floating point kernels provided via the XNNPACK delegate. The flags can be used
as follows.

Obj-C:

    TFLInterpreterOptions *options = [[TFLInterpreterOptions alloc] init];
    options.useXNNPACK = YES;
    NSError *error;
    TFLInterpreter *interpreter =
        [[TFLInterpreter alloc] initWithModelPath:@"model/path"
                                          options:options
                                            error:&error];

Swift:

    var options = InterpreterOptions()
    options.isXNNPackEnabled = true
    var interpreter = try Interpreter(modelPath: "model/path", options: options)

PiperOrigin-RevId: 317270012
Change-Id: I82aae43c3de13ab08af3c70513e2a458e807b0f1
2020-06-19 02:03:48 -07:00
..
CoreMLDelegate.swift Generate separate pod for Core ML delegate 2020-05-14 19:07:57 -07:00
Delegate.swift Revise Swift API style 2020-04-27 18:27:16 -07:00
Interpreter.swift Add flag for using optimized TFLite CPU kernels on iOS 2020-06-19 02:03:48 -07:00
InterpreterError.swift minor spelling tweaks 2020-03-11 02:31:27 +09:00
MetalDelegate.swift Add quantization option to Metal delegate Swift API 2020-06-09 06:22:18 -07:00
Model.swift
QuantizationParameters.swift
Tensor.swift Add float64 tensor support in TFLite 2020-04-03 23:20:03 -07:00
TensorFlowLite.swift