STT-tensorflow/tensorflow/lite/experimental/objc
YoungSeok Yoon 772433a2a2 Add flag for using optimized TFLite CPU kernels on iOS
This adds new experimental flags to the interpreter options of TFLite Obj-C and
Swift APIs, which can be used for opting in to a set of highly optimized
floating point kernels provided via the XNNPACK delegate. The flags can be used
as follows.

Obj-C:

    TFLInterpreterOptions *options = [[TFLInterpreterOptions alloc] init];
    options.useXNNPACK = YES;
    NSError *error;
    TFLInterpreter *interpreter =
        [[TFLInterpreter alloc] initWithModelPath:@"model/path"
                                          options:options
                                            error:&error];

Swift:

    var options = InterpreterOptions()
    options.isXNNPackEnabled = true
    var interpreter = try Interpreter(modelPath: "model/path", options: options)

PiperOrigin-RevId: 317270012
Change-Id: I82aae43c3de13ab08af3c70513e2a458e807b0f1
2020-06-19 02:03:48 -07:00
..
apis Add flag for using optimized TFLite CPU kernels on iOS 2020-06-19 02:03:48 -07:00
apps/TestApp Add a test app for TFLite ObjC API. 2019-05-21 23:03:01 -07:00
sources Add flag for using optimized TFLite CPU kernels on iOS 2020-06-19 02:03:48 -07:00
TensorFlowLite.tulsiproj Migrate the TFLite C API out of lite/experimental 2019-11-27 13:46:35 -08:00
tests Add flag for using optimized TFLite CPU kernels on iOS 2020-06-19 02:03:48 -07:00
BUILD.apple Add flag for using optimized TFLite CPU kernels on iOS 2020-06-19 02:03:48 -07:00
README.md Add a test app for TFLite ObjC API. 2019-05-21 23:03:01 -07:00
TensorFlowLiteObjC-nightly.podspec Add flag for using optimized TFLite CPU kernels on iOS 2020-06-19 02:03:48 -07:00
TensorFlowLiteObjC.podspec Add flag for using optimized TFLite CPU kernels on iOS 2020-06-19 02:03:48 -07:00
TensorFlowLiteObjC.podspec.template Add flag for using optimized TFLite CPU kernels on iOS 2020-06-19 02:03:48 -07:00

TensorFlow Lite for Objective-C

TensorFlow Lite is TensorFlow's lightweight solution for Objective-C developers. It enables low-latency inference of on-device machine learning models with a small binary size and fast performance supporting hardware acceleration.

Build TensorFlow with iOS support

To build the Objective-C TensorFlow Lite library on Apple platforms, install from source or clone the GitHub repo. Then, configure TensorFlow by navigating to the root directory and executing the configure.py script:

python configure.py

Follow the prompts and when asked to build TensorFlow with iOS support, enter y.

CocoaPods developers

Add the TensorFlow Lite pod to your Podfile:

pod 'TensorFlowLiteObjC'

Then, run pod install.

In your Objective-C files, import the umbrella header:

#import "TFLTensorFlowLite.h"

Or, the module if you set CLANG_ENABLE_MODULES = YES in your Xcode project:

@import TFLTensorFlowLite;

Note: To import the TensorFlow Lite module in your Objective-C files, you must also include use_frameworks! in your Podfile.

Bazel developers

In your BUILD file, add the TensorFlowLite dependency to your target:

objc_library(
  deps = [
      "//tensorflow/lite/experimental/objc:TensorFlowLite",
  ],
)

In your Objective-C files, import the umbrella header:

#import "TFLTensorFlowLite.h"

Or, the module if you set CLANG_ENABLE_MODULES = YES in your Xcode project:

@import TFLTensorFlowLite;

Build the TensorFlowLite Objective-C library target:

bazel build tensorflow/lite/experimental/objc:TensorFlowLite

Build the Tests target:

bazel test tensorflow/lite/experimental/objc:Tests

Generate the Xcode project using Tulsi

Open the //tensorflow/lite/experimental/objc/TensorFlowLite.tulsiproj using the TulsiApp or by running the generate_xcodeproj.sh script from the root tensorflow directory:

generate_xcodeproj.sh --genconfig tensorflow/lite/experimental/objc/TensorFlowLite.tulsiproj:TensorFlowLite --outputfolder ~/path/to/generated/TensorFlowLite.xcodeproj