This adds new experimental flags to the interpreter options of TFLite Obj-C and Swift APIs, which can be used for opting in to a set of highly optimized floating point kernels provided via the XNNPACK delegate. The flags can be used as follows. Obj-C: TFLInterpreterOptions *options = [[TFLInterpreterOptions alloc] init]; options.useXNNPACK = YES; NSError *error; TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:@"model/path" options:options error:&error]; Swift: var options = InterpreterOptions() options.isXNNPackEnabled = true var interpreter = try Interpreter(modelPath: "model/path", options: options) PiperOrigin-RevId: 317270012 Change-Id: I82aae43c3de13ab08af3c70513e2a458e807b0f1 |
||
---|---|---|
.. | ||
apis | ||
apps/TestApp | ||
sources | ||
TensorFlowLite.tulsiproj | ||
tests | ||
BUILD.apple | ||
README.md | ||
TensorFlowLiteObjC-nightly.podspec | ||
TensorFlowLiteObjC.podspec | ||
TensorFlowLiteObjC.podspec.template |
TensorFlow Lite for Objective-C
TensorFlow Lite is TensorFlow's lightweight solution for Objective-C developers. It enables low-latency inference of on-device machine learning models with a small binary size and fast performance supporting hardware acceleration.
Build TensorFlow with iOS support
To build the Objective-C TensorFlow Lite library on Apple platforms,
install from source
or clone the GitHub repo.
Then, configure TensorFlow by navigating to the root directory and executing the
configure.py
script:
python configure.py
Follow the prompts and when asked to build TensorFlow with iOS support, enter y
.
CocoaPods developers
Add the TensorFlow Lite pod to your Podfile
:
pod 'TensorFlowLiteObjC'
Then, run pod install
.
In your Objective-C files, import the umbrella header:
#import "TFLTensorFlowLite.h"
Or, the module if you set CLANG_ENABLE_MODULES = YES
in your Xcode project:
@import TFLTensorFlowLite;
Note: To import the TensorFlow Lite module in your Objective-C files, you must
also include use_frameworks!
in your Podfile
.
Bazel developers
In your BUILD
file, add the TensorFlowLite
dependency to your target:
objc_library(
deps = [
"//tensorflow/lite/experimental/objc:TensorFlowLite",
],
)
In your Objective-C files, import the umbrella header:
#import "TFLTensorFlowLite.h"
Or, the module if you set CLANG_ENABLE_MODULES = YES
in your Xcode project:
@import TFLTensorFlowLite;
Build the TensorFlowLite
Objective-C library target:
bazel build tensorflow/lite/experimental/objc:TensorFlowLite
Build the Tests
target:
bazel test tensorflow/lite/experimental/objc:Tests
Generate the Xcode project using Tulsi
Open the //tensorflow/lite/experimental/objc/TensorFlowLite.tulsiproj
using
the TulsiApp
or by running the
generate_xcodeproj.sh
script from the root tensorflow
directory:
generate_xcodeproj.sh --genconfig tensorflow/lite/experimental/objc/TensorFlowLite.tulsiproj:TensorFlowLite --outputfolder ~/path/to/generated/TensorFlowLite.xcodeproj