STT-tensorflow/tensorflow/lite/delegates/utils.h
2020-06-03 16:41:38 -07:00

181 lines
7.6 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_DELEGATES_UTILS_H_
#define TENSORFLOW_LITE_DELEGATES_UTILS_H_
// Utility functions and classes for implementing delegates.
#include <functional>
#include <limits>
#include <set>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/util.h"
namespace tflite {
namespace delegates {
// Creates a new Read/Write tensor having the same shape as the original, but
// with a different type.
TfLiteStatus CreateNewTensorWithDifferentType(TfLiteContext* context,
const int original_tensor_index,
TfLiteType new_type,
TfLiteTensor** new_tensor,
int* new_tensor_index);
using IsNodeSupportedFn =
std::function<bool(TfLiteContext*, TfLiteNode*, TfLiteRegistration*,
std::string* unsupported_details)>;
// A utility class to help model graph parition.
// Note the class *needs* to be used in TfLiteDelegate::Prepare.
class GraphPartitionHelper {
public:
GraphPartitionHelper(TfLiteContext* context,
IsNodeSupportedFn is_node_supported_fn)
: context_(context), is_node_supported_fn_(is_node_supported_fn) {}
GraphPartitionHelper(TfLiteContext* context,
const std::vector<int>& supported_node_indices)
: context_(context),
num_total_nodes_(supported_node_indices.size()),
supported_nodes_(
ConvertVectorToTfLiteIntArray(supported_node_indices)) {}
virtual ~GraphPartitionHelper() { TfLiteIntArrayFree(supported_nodes_); }
// Partition the graph into node subsets such that each subset could be
// replaced with one delegate kernel (i.e. a kTfLiteBuiltinDelegate op).
// If 'unsupported_nodes_info' is provided, it will be populated with
// information about all different unsupported nodes.
virtual TfLiteStatus Partition(std::set<std::string>* unsupported_nodes_info);
// Returns the first n largest partitions or all if #partitions is less than
// 'n' and each parition has at least (>=) 'min_nodes_per_partition' nodes.
// Note that partitions are ranked according to the number of nodes that
// a partition has, and the returned TfLiteDelegateParams objects are *owned*
// by the TfLite runtime.
// TODO(b/156707497): remove this and use GetNodesOfFirstNLargestPartitions
std::vector<TfLiteDelegateParams*> GetFirstNLargestPartitions(
int n = std::numeric_limits<int>::max(),
int min_nodes_per_partition = 0) const;
// Returns a list of node indices of all nodes from the first n largest
// partitions. If there are fewer paritions than n, all nodes will be
// returned. The partition is ranked according to the number of nodes.
std::vector<int> GetNodesOfFirstNLargestPartitions(
int n = std::numeric_limits<int>::max(),
int min_nodes_per_partition = 0) {
// Separated implementation that can be overrided, to preserve default value
return GetNodesOfFirstNLargestPartitionsImpl(n, min_nodes_per_partition);
}
int num_total_nodes() const { return num_total_nodes_; }
int num_partitions() const { return partitions_.size(); }
protected:
virtual bool IsNodeSupported(TfLiteContext* context, TfLiteNode* node,
TfLiteRegistration* registration, int node_id,
std::string* unsupported_details) {
return is_node_supported_fn_(context, node, registration,
unsupported_details);
}
virtual std::vector<int> GetNodesOfFirstNLargestPartitionsImpl(
int n, int min_nodes_per_partition);
TfLiteContext* const context_ = nullptr;
// Doesn't own the memory of each TfLiteDelegateParams object as it's
// managed by the TfLite runtime itself. See
// TfLiteContext::PreviewDelegatePartitioning for details.
std::vector<TfLiteDelegateParams*> partitions_;
private:
// Generate a list of supported nodes (i.e. populating 'supported_nodes_') by
// iterating over all nodes (i,e. those listed in the execution_plan
// associated w/ 'context_').
// If 'unsupported_nodes_info' is provided, it will be populated with
// information about all different unsupported nodes.
TfLiteStatus PrepareSupportedNodes(
std::set<std::string>* unsupported_nodes_info = nullptr);
// The number of total nodes passed in for partitioning (i.e. the
// execution_plan size associated w/ 'context_')
int num_total_nodes_ = 0;
// Tells if a node is supported as it could be delegated.
const IsNodeSupportedFn is_node_supported_fn_ = nullptr;
// Contains an array of supported node indices.
TfLiteIntArray* supported_nodes_ = nullptr; // owns the memory
};
// Specialized partitioner for graphs that possibly contain fp16 tensors.
//
// From nodes that accept fp16 inputs, this delegates the following:
// 1. All nodes (except DEQUANTIZE) that are supported with fp16 inputs by the
// delegate (in the TFLite graph, these nodes take in dequantized FP32
// outputs).
// 2. All fp16 DEQUANTIZE nodes that have *all* their consumers in the *first*
// delegated partition. This is because TFLite's partitioning algorithm
// greedily puts all such nodes in the first partition.
class FP16GraphPartitionHelper : public GraphPartitionHelper {
public:
FP16GraphPartitionHelper(TfLiteContext* context,
IsNodeSupportedFn is_node_supported_fn)
: GraphPartitionHelper(context, std::move(is_node_supported_fn)) {}
protected:
// Specialized function to handle fp16 nodes.
bool IsNodeSupported(TfLiteContext* context, TfLiteNode* node,
TfLiteRegistration* registration, int node_id,
std::string* unsupported_details) override;
// This will remap input tensors by removing FP16 to FP32 dequantized tensors.
std::vector<int> GetNodesOfFirstNLargestPartitionsImpl(
int n, int min_nodes_per_partition) override;
private:
// This remaps fp32 inputs of the given node to their corresponding fp16
// version, if applicable. Can be summarized as:
// fp16 -> DEQUANTIZE -> fp32 -> OP -> output
// becomes
// fp16 -> OP -> output
void RemapFp16InputTensors(TfLiteNode* node,
std::vector<int>* orig_inputs) const;
// Performs the above remapping for all nodes in the given list, without
// tracking the original inputs.
void RemapFp16InputTensors(const std::vector<int>& nodes) const;
// ('dequantize' here refers to fp16 DEQUANTIZE)
// Mapping of dequantize nodes' output tensor-id to its node id.
std::unordered_map<int, int> dequant_nodes_;
// Mapping of DEQUANTIZE node's output (fp32) to its input (fp16).
std::unordered_map<int, int> dequant_map_;
// mapping of DEQUANTIZE output tensor-id to its number of consumers.
std::unordered_map<int, int> dequant_consumers_;
};
} // namespace delegates
} // namespace tflite
#endif // TENSORFLOW_LITE_DELEGATES_UTILS_H_