STT-tensorflow/tensorflow/examples/speech_commands/freeze.py
Pete Warden 314b503bd2 Add SavedModel support to speech commands training
PiperOrigin-RevId: 307691321
Change-Id: Ib52d1bf5537835ce56db11b074a0f3df9c3f9206
2020-04-21 15:24:55 -07:00

313 lines
12 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Converts a trained checkpoint into a frozen model for mobile inference.
Once you've trained a model using the `train.py` script, you can use this tool
to convert it into a binary GraphDef file that can be loaded into the Android,
iOS, or Raspberry Pi example code. Here's an example of how to run it:
bazel run tensorflow/examples/speech_commands/freeze -- \
--sample_rate=16000 --dct_coefficient_count=40 --window_size_ms=20 \
--window_stride_ms=10 --clip_duration_ms=1000 \
--model_architecture=conv \
--start_checkpoint=/tmp/speech_commands_train/conv.ckpt-1300 \
--output_file=/tmp/my_frozen_graph.pb
One thing to watch out for is that you need to pass in the same arguments for
`sample_rate` and other command line variables here as you did for the training
script.
The resulting graph has an input for WAV-encoded data named 'wav_data', one for
raw PCM data (as floats in the range -1.0 to 1.0) called 'decoded_sample_data',
and the output is called 'labels_softmax'.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import sys
import tensorflow as tf
import input_data
import models
from tensorflow.python.framework import graph_util
from tensorflow.python.ops import gen_audio_ops as audio_ops
# If it's available, load the specialized feature generator. If this doesn't
# work, try building with bazel instead of running the Python script directly.
# bazel run tensorflow/examples/speech_commands:freeze_graph
try:
from tensorflow.lite.experimental.microfrontend.python.ops import audio_microfrontend_op as frontend_op # pylint:disable=g-import-not-at-top
except ImportError:
frontend_op = None
FLAGS = None
def create_inference_graph(wanted_words, sample_rate, clip_duration_ms,
clip_stride_ms, window_size_ms, window_stride_ms,
feature_bin_count, model_architecture, preprocess):
"""Creates an audio model with the nodes needed for inference.
Uses the supplied arguments to create a model, and inserts the input and
output nodes that are needed to use the graph for inference.
Args:
wanted_words: Comma-separated list of the words we're trying to recognize.
sample_rate: How many samples per second are in the input audio files.
clip_duration_ms: How many samples to analyze for the audio pattern.
clip_stride_ms: How often to run recognition. Useful for models with cache.
window_size_ms: Time slice duration to estimate frequencies from.
window_stride_ms: How far apart time slices should be.
feature_bin_count: Number of frequency bands to analyze.
model_architecture: Name of the kind of model to generate.
preprocess: How the spectrogram is processed to produce features, for
example 'mfcc', 'average', or 'micro'.
Returns:
Input and output tensor objects.
Raises:
Exception: If the preprocessing mode isn't recognized.
"""
words_list = input_data.prepare_words_list(wanted_words.split(','))
model_settings = models.prepare_model_settings(
len(words_list), sample_rate, clip_duration_ms, window_size_ms,
window_stride_ms, feature_bin_count, preprocess)
runtime_settings = {'clip_stride_ms': clip_stride_ms}
wav_data_placeholder = tf.compat.v1.placeholder(tf.string, [],
name='wav_data')
decoded_sample_data = tf.audio.decode_wav(
wav_data_placeholder,
desired_channels=1,
desired_samples=model_settings['desired_samples'],
name='decoded_sample_data')
spectrogram = audio_ops.audio_spectrogram(
decoded_sample_data.audio,
window_size=model_settings['window_size_samples'],
stride=model_settings['window_stride_samples'],
magnitude_squared=True)
if preprocess == 'average':
fingerprint_input = tf.nn.pool(
input=tf.expand_dims(spectrogram, -1),
window_shape=[1, model_settings['average_window_width']],
strides=[1, model_settings['average_window_width']],
pooling_type='AVG',
padding='SAME')
elif preprocess == 'mfcc':
fingerprint_input = audio_ops.mfcc(
spectrogram,
sample_rate,
dct_coefficient_count=model_settings['fingerprint_width'])
elif preprocess == 'micro':
if not frontend_op:
raise Exception(
'Micro frontend op is currently not available when running TensorFlow'
' directly from Python, you need to build and run through Bazel, for'
' example'
' `bazel run tensorflow/examples/speech_commands:freeze_graph`')
sample_rate = model_settings['sample_rate']
window_size_ms = (model_settings['window_size_samples'] *
1000) / sample_rate
window_step_ms = (model_settings['window_stride_samples'] *
1000) / sample_rate
int16_input = tf.cast(
tf.multiply(decoded_sample_data.audio, 32767), tf.int16)
micro_frontend = frontend_op.audio_microfrontend(
int16_input,
sample_rate=sample_rate,
window_size=window_size_ms,
window_step=window_step_ms,
num_channels=model_settings['fingerprint_width'],
out_scale=1,
out_type=tf.float32)
fingerprint_input = tf.multiply(micro_frontend, (10.0 / 256.0))
else:
raise Exception('Unknown preprocess mode "%s" (should be "mfcc",'
' "average", or "micro")' % (preprocess))
fingerprint_size = model_settings['fingerprint_size']
reshaped_input = tf.reshape(fingerprint_input, [-1, fingerprint_size])
logits = models.create_model(
reshaped_input, model_settings, model_architecture, is_training=False,
runtime_settings=runtime_settings)
# Create an output to use for inference.
softmax = tf.nn.softmax(logits, name='labels_softmax')
return reshaped_input, softmax
def save_graph_def(file_name, frozen_graph_def):
"""Writes a graph def file out to disk.
Args:
file_name: Where to save the file.
frozen_graph_def: GraphDef proto object to save.
"""
tf.io.write_graph(
frozen_graph_def,
os.path.dirname(file_name),
os.path.basename(file_name),
as_text=False)
tf.compat.v1.logging.info('Saved frozen graph to %s', file_name)
def save_saved_model(file_name, sess, input_tensor, output_tensor):
"""Writes a SavedModel out to disk.
Args:
file_name: Where to save the file.
sess: TensorFlow session containing the graph.
input_tensor: Tensor object defining the input's properties.
output_tensor: Tensor object defining the output's properties.
"""
# Store the frozen graph as a SavedModel for v2 compatibility.
builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(file_name)
tensor_info_inputs = {
'input': tf.compat.v1.saved_model.utils.build_tensor_info(input_tensor)
}
tensor_info_outputs = {
'output': tf.compat.v1.saved_model.utils.build_tensor_info(output_tensor)
}
signature = (
tf.compat.v1.saved_model.signature_def_utils.build_signature_def(
inputs=tensor_info_inputs,
outputs=tensor_info_outputs,
method_name=tf.compat.v1.saved_model.signature_constants
.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess,
[tf.compat.v1.saved_model.tag_constants.SERVING],
signature_def_map={
tf.compat.v1.saved_model.signature_constants
.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
signature,
},
)
builder.save()
def main(_):
if FLAGS.quantize:
try:
_ = tf.contrib
except AttributeError as e:
msg = e.args[0]
msg += ('\n\n The --quantize option still requires contrib, which is not '
'part of TensorFlow 2.0. Please install a previous version:'
'\n `pip install tensorflow<=1.15`')
e.args = (msg,)
raise e
# Create the model and load its weights.
sess = tf.compat.v1.InteractiveSession()
input_tensor, output_tensor = create_inference_graph(
FLAGS.wanted_words, FLAGS.sample_rate, FLAGS.clip_duration_ms,
FLAGS.clip_stride_ms, FLAGS.window_size_ms, FLAGS.window_stride_ms,
FLAGS.feature_bin_count, FLAGS.model_architecture, FLAGS.preprocess)
if FLAGS.quantize:
tf.contrib.quantize.create_eval_graph()
models.load_variables_from_checkpoint(sess, FLAGS.start_checkpoint)
# Turn all the variables into inline constants inside the graph and save it.
frozen_graph_def = graph_util.convert_variables_to_constants(
sess, sess.graph_def, ['labels_softmax'])
if FLAGS.save_format == 'graph_def':
save_graph_def(FLAGS.output_file, frozen_graph_def)
elif FLAGS.save_format == 'saved_model':
save_saved_model(FLAGS.output_file, sess, input_tensor, output_tensor)
else:
raise Exception('Unknown save format "%s" (should be "graph_def" or'
' "saved_model")' % (FLAGS.save_format))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--sample_rate',
type=int,
default=16000,
help='Expected sample rate of the wavs',)
parser.add_argument(
'--clip_duration_ms',
type=int,
default=1000,
help='Expected duration in milliseconds of the wavs',)
parser.add_argument(
'--clip_stride_ms',
type=int,
default=30,
help='How often to run recognition. Useful for models with cache.',)
parser.add_argument(
'--window_size_ms',
type=float,
default=30.0,
help='How long each spectrogram timeslice is',)
parser.add_argument(
'--window_stride_ms',
type=float,
default=10.0,
help='How long the stride is between spectrogram timeslices',)
parser.add_argument(
'--feature_bin_count',
type=int,
default=40,
help='How many bins to use for the MFCC fingerprint',
)
parser.add_argument(
'--start_checkpoint',
type=str,
default='',
help='If specified, restore this pretrained model before any training.')
parser.add_argument(
'--model_architecture',
type=str,
default='conv',
help='What model architecture to use')
parser.add_argument(
'--wanted_words',
type=str,
default='yes,no,up,down,left,right,on,off,stop,go',
help='Words to use (others will be added to an unknown label)',)
parser.add_argument(
'--output_file', type=str, help='Where to save the frozen graph.')
parser.add_argument(
'--quantize',
type=bool,
default=False,
help='Whether to train the model for eight-bit deployment')
parser.add_argument(
'--preprocess',
type=str,
default='mfcc',
help='Spectrogram processing mode. Can be "mfcc" or "average"')
parser.add_argument(
'--save_format',
type=str,
default='graph_def',
help='How to save the result. Can be "graph_def" or "saved_model"')
FLAGS, unparsed = parser.parse_known_args()
tf.compat.v1.app.run(main=main, argv=[sys.argv[0]] + unparsed)