80 lines
3.6 KiB
C++
80 lines
3.6 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
// Utilities for working with XLA shapes.
|
|
|
|
#ifndef TENSORFLOW_COMPILER_TF2XLA_SHAPE_UTIL_H_
|
|
#define TENSORFLOW_COMPILER_TF2XLA_SHAPE_UTIL_H_
|
|
|
|
#include <vector>
|
|
|
|
#include "tensorflow/compiler/xla/shape.h"
|
|
#include "tensorflow/compiler/xla/statusor.h"
|
|
#include "tensorflow/compiler/xla/xla_data.pb.h"
|
|
#include "tensorflow/core/framework/tensor_shape.h"
|
|
#include "tensorflow/core/framework/types.pb.h"
|
|
|
|
namespace tensorflow {
|
|
|
|
// Convert an XLA Shape into the equivalent TensorFlow shape. May fail since
|
|
// not all XLA shapes can be represented as TensorShapes.
|
|
Status XLAShapeToTensorShape(const xla::Shape& shape,
|
|
TensorShape* tensor_shape);
|
|
|
|
// Convert a TensorShape into the equivalent XLA Shape proto. Unlike Tensorflow,
|
|
// XLA shapes include the type. Not all `dtype` values can be represented by
|
|
// XLA, so this conversion may fail.
|
|
Status TensorShapeToXLAShape(DataType dtype, const TensorShape& tensor_shape,
|
|
xla::Shape* shape);
|
|
|
|
// Converts a TensorShape into the equivalent XLA Shape proto, taking an
|
|
// xla::PrimitiveType to specify the element type. This never fails.
|
|
xla::Shape TensorShapeToXLAShape(xla::PrimitiveType type,
|
|
const TensorShape& tensor_shape);
|
|
|
|
// Convert a PartialTensorShape into the equivalent XLA Shape proto. An shape
|
|
// with unknown rank is represented by an r1 with empty dimension.
|
|
Status TensorShapeToXLAShape(DataType dtype,
|
|
const PartialTensorShape& tensor_shape,
|
|
xla::Shape* shape);
|
|
|
|
// Convert a PartialTensorShape into the equivalent XLA Shape proto. An shape
|
|
// with unknown rank is represented by an r1 with empty dimension.
|
|
xla::Shape TensorShapeToXLAShape(xla::PrimitiveType type,
|
|
const PartialTensorShape& tensor_shape);
|
|
|
|
// Given an XLA shape with layouts, builds a layout vector in the form able to
|
|
// be fed to ops like InfeedEnqueue/InfeedEnqueueTuple/XRTAllocateV2/....
|
|
// THe returned vector is a linearized sequence of the minor-to-major values of
|
|
// the layouts held within the input shape.
|
|
// In case the input shape is a tuple, the minor-to-major values will be in the
|
|
// order of the tuple elements within the tuple shape.
|
|
// If a shape (or a subshape of a tuple shape) has missing layout, a rank long
|
|
// sequence of -1 values will be emitted.
|
|
xla::StatusOr<std::vector<int>> GetShapeLayoutVector(const xla::Shape& shape);
|
|
|
|
// Given the input shape and a linearized sequence of the minor-to-major values
|
|
// of the layouts, create the output shape by rewriting the input shape layouts.
|
|
// If a layout is missing (has -1 values) for a matching tuple subshape, the
|
|
// layout_func will be called, if not nullptr.
|
|
Status GetShapeWithLayout(
|
|
const xla::Shape& input_shape, absl::Span<const int64> minor_to_major,
|
|
const std::function<xla::Layout(const xla::Shape&)>& layout_func,
|
|
xla::Shape* output_shape);
|
|
|
|
} // namespace tensorflow
|
|
|
|
#endif // TENSORFLOW_COMPILER_TF2XLA_SHAPE_UTIL_H_
|