STT-tensorflow/tensorflow/compiler/tf2xla/lib/random.h
Bixia Zheng b1a6b315a6 [XLA] Support parameterized truncated normal.
Add ParameterizedTruncatedNormal to the XLA client library, and uses it to
implement the standard version of TruncatedNormal.

Add XlaOpKernel for ParameterizedTruncatedNormal.

Add compiler test for parameterized truncated normal.

PiperOrigin-RevId: 258860922
2019-07-18 16:05:37 -07:00

43 lines
1.7 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_TF2XLA_LIB_RANDOM_H_
#define TENSORFLOW_COMPILER_TF2XLA_LIB_RANDOM_H_
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/core/framework/types.pb.h"
namespace tensorflow {
// Builds an array of values sampled from a truncated normal distribution:
//
// uniform: an array of random numbers in uniform distribution (0, 1).
// mu: the mean of the normal distribution.
// sigma: the standard deviation of the normal distribution.
// a: the lower bound of the generated values.
// b: the upper bound of the generated values.
xla::XlaOp ParameterizedTruncatedNormal(xla::XlaOp uniform, xla::XlaOp mu,
xla::XlaOp sigma, xla::XlaOp a,
xla::XlaOp b);
// A specialized version of ParameterizedTruncatedNormal, with mu=0, sigma=1,
// a=-2 and b=2.
xla::XlaOp TruncatedNormal(xla::XlaOp uniform);
} // namespace tensorflow
#endif // TENSORFLOW_COMPILER_TF2XLA_LIB_RANDOM_H_