STT-tensorflow/tensorflow/compiler/tf2xla/graph_compiler.h

93 lines
3.8 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_TF2XLA_GRAPH_COMPILER_H_
#define TENSORFLOW_COMPILER_TF2XLA_GRAPH_COMPILER_H_
#include "tensorflow/compiler/tf2xla/xla_compilation_device.h"
#include "tensorflow/compiler/tf2xla/xla_context.h"
#include "tensorflow/compiler/xla/client/local_client.h"
#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/common_runtime/device_mgr.h"
#include "tensorflow/core/common_runtime/function.h"
#include "tensorflow/core/framework/function.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/notification.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/core/public/version.h"
namespace tensorflow {
// GraphCompiler compiles the graph in topological order in the current
// thread. It also resolves the nondeterminism in the graph by enforcing a
// total order on all inputs to a node. This abstraction helps us create the
// same XLA computation given two structurally equivalent TensorFlow graphs.
// If a function call is visited during the graph traversal, it is then
// compiled through the xla_context into a computation and a `Call` operation
// is inserted to call into that computation.
//
// Note: GraphCompiler was created to remove our dependency to TF Executor in
// the history. There are still some todos so that we can completely decouple
// from Executor.
//
// TODO(yunxing): Remove usage of XlaCompilationDevice.
//
// TODO(yunxing): Remove the hack that wraps XlaExpression within a tensor now
// that we don't use TF Executor to pass around a tensor.
//
// TODO(yunxing): Make XlaOpkernel not a subclass of OpKernel so that it can
// handle a XlaExpression directly instead of a Tensor. This may require our own
// op registration infrastructure instead of FunctionLibraryRuntime.
class GraphCompiler {
public:
GraphCompiler(XlaCompilationDevice* device, Graph* graph,
FunctionLibraryRuntime* flib,
ScopedStepContainer* step_container)
: device_(device),
graph_(graph),
flib_(flib),
step_container_(step_container) {}
// Compiles the graph. The results are written in xla_context stored in the
// resource_manager of the 'XlaCompilationDevice' that's passed into the
// constructor.
Status Compile();
private:
// Partially sets params. This partially set params can be reused
// across multiple nodes visit.
void PartiallySetupParams(OpKernelContext::Params* params);
// Compiles a functional node and writes result to OpkernelContext. A
// functional node represents a defined computation and should be compiled
// using `compiler_`.
Status CompileFunctionalNode(Node* n, OpKernelContext* op_context);
XlaCompilationDevice* device_;
Graph* graph_;
FunctionLibraryRuntime* flib_;
ScopedStepContainer* step_container_;
// A buffer to hold tensor inputs to a node, this is reused across the graph
// traversal.
absl::InlinedVector<TensorValue, 4> tensor_inputs_;
};
} // namespace tensorflow
#endif // TENSORFLOW_COMPILER_TF2XLA_GRAPH_COMPILER_H_