This is needed to support back_prop=False in v2 control flow. PiperOrigin-RevId: 298720533 Change-Id: I33cd2f2603cff07193c0275878ff22c4c8338fa8
269 lines
9.4 KiB
Python
269 lines
9.4 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for while loops in XLA."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.compiler.tf2xla.python import xla
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import function
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import control_flow_ops
|
|
from tensorflow.python.ops import gradients_impl
|
|
from tensorflow.python.ops import map_fn
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class WhileTest(xla_test.XLATestCase):
|
|
|
|
def testSingletonLoopHandrolled(self):
|
|
# Define a function for the loop body
|
|
@function.Defun(dtypes.int32)
|
|
def loop_body(step):
|
|
step_out = step + constant_op.constant(1, dtype=dtypes.int32)
|
|
return step_out
|
|
|
|
# Define a function for the loop condition
|
|
@function.Defun(dtypes.int32)
|
|
def loop_cond(step):
|
|
return step < 10
|
|
|
|
with self.session() as sess:
|
|
init_index = array_ops.placeholder(dtypes.int32, [])
|
|
with self.test_scope():
|
|
loop_outputs = xla.while_loop([init_index], loop_cond, loop_body)
|
|
|
|
result = sess.run(loop_outputs, {init_index: 0})
|
|
self.assertAllClose(result, [10], rtol=1e-3)
|
|
|
|
def testCountingLoopHandrolled(self):
|
|
# Define a function for the loop body
|
|
@function.Defun(dtypes.int32, dtypes.float32)
|
|
def loop_body(step, rsum):
|
|
step_out = step + constant_op.constant(1, dtype=dtypes.int32)
|
|
sum_out = rsum + constant_op.constant(1.5, dtype=dtypes.float32)
|
|
return step_out, sum_out
|
|
|
|
# Define a function for the loop condition
|
|
@function.Defun(dtypes.int32, dtypes.float32)
|
|
def loop_cond(step, rsum):
|
|
del rsum
|
|
return step < 10
|
|
|
|
with self.session() as sess:
|
|
init_index = array_ops.placeholder(dtypes.int32, [])
|
|
init_sum = array_ops.placeholder(dtypes.float32, [])
|
|
with self.test_scope():
|
|
loop_outputs = xla.while_loop([init_index, init_sum], loop_cond,
|
|
loop_body)
|
|
|
|
result = sess.run(loop_outputs, {init_index: 0, init_sum: 0.0})
|
|
self.assertAllClose(result, [10, 15.0], rtol=1e-3)
|
|
no_iters_result = sess.run(loop_outputs, {init_index: 10, init_sum: 0.0})
|
|
self.assertAllClose(no_iters_result, [10, 0.0], rtol=1e-3)
|
|
|
|
def testCountingLoopHandrolledC64(self):
|
|
# Define a function for the loop body
|
|
@function.Defun(dtypes.int32, dtypes.complex64)
|
|
def loop_body(step, rsum):
|
|
step_out = step + constant_op.constant(1, dtype=dtypes.int32)
|
|
sum_out = rsum + constant_op.constant(1.5 + 2j, dtype=dtypes.complex64)
|
|
return step_out, sum_out
|
|
|
|
# Define a function for the loop condition
|
|
@function.Defun(dtypes.int32, dtypes.complex64)
|
|
def loop_cond(step, rsum):
|
|
del rsum
|
|
return step < 10
|
|
|
|
with self.session() as sess:
|
|
init_index = array_ops.placeholder(dtypes.int32, [])
|
|
init_sum = array_ops.placeholder(dtypes.complex64, [])
|
|
with self.test_scope():
|
|
loop_outputs = xla.while_loop([init_index, init_sum], loop_cond,
|
|
loop_body)
|
|
|
|
result = sess.run(loop_outputs, {init_index: 0, init_sum: 0.0})
|
|
self.assertAllClose(result[1], np.complex64(15 + 20j), rtol=1e-3)
|
|
no_iters_result = sess.run(loop_outputs, {init_index: 10, init_sum: 0.0})
|
|
self.assertAllClose(no_iters_result[1], np.complex64(0), rtol=1e-3)
|
|
|
|
def testLoopWithConstantOutput(self):
|
|
# Define a function for the loop body
|
|
@function.Defun(dtypes.int32, dtypes.int32)
|
|
def loop_body(step, x):
|
|
del x
|
|
step_out = step + constant_op.constant(1, dtype=dtypes.int32)
|
|
return (step_out, 7)
|
|
|
|
# Define a function for the loop condition
|
|
@function.Defun(dtypes.int32, dtypes.int32)
|
|
def loop_cond(step, x):
|
|
del x
|
|
return step < 10
|
|
|
|
with self.session() as sess:
|
|
init_index = array_ops.placeholder(dtypes.int32, [])
|
|
with self.test_scope():
|
|
loop_outputs = xla.while_loop([init_index, 42], loop_cond, loop_body)
|
|
|
|
result = sess.run(loop_outputs, {init_index: 0})
|
|
self.assertAllClose(result, [10, 7], rtol=1e-3)
|
|
|
|
def _testMaxItersSimple(self):
|
|
if is_compile_on_demand():
|
|
self.skipTest("list_ops are not supported in cpu_ondemand")
|
|
with self.session() as sess, self.test_scope():
|
|
xla_context = control_flow_ops.XLAControlFlowContext()
|
|
xla_context.Enter()
|
|
v = constant_op.constant(1.0)
|
|
p = array_ops.placeholder(dtype=dtypes.int32)
|
|
|
|
def create_while_loop():
|
|
iterations = array_ops.size(p, name="iterations")
|
|
r = control_flow_ops.while_loop(
|
|
lambda *_: True,
|
|
lambda i, x: (i + 1, v * x), (0, 1.0),
|
|
maximum_iterations=iterations,
|
|
name="outer")
|
|
return array_ops.identity(r[1])
|
|
|
|
output = create_while_loop()
|
|
output = gradients_impl.gradients(output, v)[0]
|
|
|
|
result = sess.run(output, feed_dict={p: [0, 0, 0]})
|
|
print(result)
|
|
xla_context.Exit()
|
|
|
|
def testMaxItersSimple(self):
|
|
self.skipTest("Fails with v1 control flow")
|
|
# This fails with old control.
|
|
# self._testMaxItersSimple()
|
|
|
|
@test_util.enable_control_flow_v2
|
|
def testMaxItersSimpleV2(self):
|
|
self._testMaxItersSimple()
|
|
|
|
def _testNestedWhileLoopWithMaxItersFromOuterContext(self):
|
|
if is_compile_on_demand():
|
|
self.skipTest("list_ops are not supported in cpu_ondemand")
|
|
with self.session() as sess, self.test_scope():
|
|
xla_context = control_flow_ops.XLAControlFlowContext()
|
|
xla_context.Enter()
|
|
v = constant_op.constant(1.0)
|
|
p = array_ops.placeholder(dtype=dtypes.int32)
|
|
|
|
def mid_body_builder(iterations):
|
|
|
|
def mid_body(i, x):
|
|
r = control_flow_ops.while_loop(
|
|
lambda *_: True,
|
|
lambda i, x: (i + 1, v * x), (0, x),
|
|
maximum_iterations=iterations,
|
|
name="inner")
|
|
return (i + 1, gradients_impl.gradients(x + r[1], v)[0])
|
|
|
|
return mid_body
|
|
|
|
def outer_body(i, x):
|
|
iterations = array_ops.size(p, name="iterations")
|
|
return (i + 1, x + control_flow_ops.while_loop(
|
|
lambda *_: True,
|
|
mid_body_builder(iterations), (0, x),
|
|
maximum_iterations=iterations,
|
|
name="mid")[1])
|
|
|
|
def create_while_loop():
|
|
r = control_flow_ops.while_loop(
|
|
lambda *_: True,
|
|
outer_body, (0, 1.0),
|
|
maximum_iterations=5,
|
|
name="outer")
|
|
return array_ops.identity(r[1])
|
|
|
|
# p:placeholder
|
|
# j = 0
|
|
# i, x = 0, 1.
|
|
# while j++ < 5:
|
|
# i1, x1 = 0, x
|
|
# while i1++ < len(p):
|
|
# i2, x2 = 0, x1
|
|
# while i2++ < len(p):
|
|
# x2 = v * x2
|
|
# x1 = grad(x1 + x2, v)
|
|
# x = x1
|
|
# output = x
|
|
output = create_while_loop()
|
|
sess.run(output, feed_dict={p: [0, 0, 0]})
|
|
xla_context.Exit()
|
|
|
|
def testNestedWhileLoopWithMaxItersFromOuterContext(self):
|
|
self._testNestedWhileLoopWithMaxItersFromOuterContext()
|
|
|
|
@test_util.enable_control_flow_v2
|
|
def testNestedWhileLoopWithMaxItersFromOuterContextV2(self):
|
|
self._testNestedWhileLoopWithMaxItersFromOuterContext()
|
|
|
|
@test_util.enable_control_flow_v2
|
|
def testMap(self):
|
|
if is_compile_on_demand():
|
|
self.skipTest("list_ops are not supported in cpu_ondemand")
|
|
with self.session(), self.test_scope():
|
|
xla_context = control_flow_ops.XLAControlFlowContext()
|
|
xla_context.Enter()
|
|
nums = [1, 2, 3, 4, 5, 6]
|
|
elems = constant_op.constant(nums, name="data")
|
|
r = map_fn.map_fn(lambda x: math_ops.multiply(math_ops.add(x, 3), 2),
|
|
elems)
|
|
self.assertAllEqual(r, np.array([(x + 3) * 2 for x in nums]))
|
|
xla_context.Exit()
|
|
|
|
@test_util.enable_control_flow_v2
|
|
def testMapBackPropFalse(self):
|
|
if is_compile_on_demand():
|
|
self.skipTest("list_ops are not supported in cpu_ondemand")
|
|
with self.session(), self.test_scope():
|
|
xla_context = control_flow_ops.XLAControlFlowContext()
|
|
xla_context.Enter()
|
|
nums = [1, 2, 3, 4, 5, 6]
|
|
elems = constant_op.constant(nums, name="data")
|
|
r = map_fn.map_fn(
|
|
lambda x: math_ops.multiply(math_ops.add(x, 3), 2),
|
|
elems,
|
|
back_prop=False)
|
|
self.assertAllEqual(r, np.array([(x + 3) * 2 for x in nums]))
|
|
xla_context.Exit()
|
|
|
|
|
|
def is_compile_on_demand():
|
|
return ("TF_XLA_FLAGS" in os.environ and
|
|
"tf_xla_compile_on_demand" in os.environ["TF_XLA_FLAGS"])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
os.environ["TF_XLA_FLAGS"] = ("--tf_xla_min_cluster_size=2 " +
|
|
os.environ.get("TF_XLA_FLAGS", ""))
|
|
test.main()
|