The session returned by cached_session uses soft placement, something we don't want for XLA_* devices. With soft placement ops lacking XLA kernels silently fall back and run on the CPU, misleading us into thinking we have more test coverage than we actually do. With this test some tests (rightly) start failing because they were testing ops with dtypes the XLA kernels do not support. I've removed these dtypes from the tests. This CL partially addresses b/132430685. It stubs out "cached_session" and "test_session" to raise errors, so we have more confidence that the compiler is being exercised. However, we still use XLA_* devices to exercise XLA, which has a different code path than xla.compile and tpu.rewrite. This needs to be incrementally fixed. PiperOrigin-RevId: 248437673
853 lines
30 KiB
Python
853 lines
30 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Conv2D via the XLA JIT.
|
|
|
|
The canned results in these tests are created by running each test using the
|
|
Tensorflow CPU device and saving the output.
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import test_utils
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gen_nn_ops
|
|
from tensorflow.python.ops import nn_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
DATA_FORMATS = (
|
|
("_data_format_NHWC", "NHWC"),
|
|
("_data_format_NCHW", "NCHW"),
|
|
)
|
|
|
|
|
|
class Conv2DTest(xla_test.XLATestCase, parameterized.TestCase):
|
|
|
|
def _VerifyValues(self,
|
|
input_sizes=None,
|
|
filter_sizes=None,
|
|
strides=None,
|
|
dilations=None,
|
|
padding=None,
|
|
data_format_src="NHWC",
|
|
data_format_dst="NHWC",
|
|
expected=None):
|
|
"""Tests that tf.nn.conv2d produces the expected value.
|
|
|
|
Args:
|
|
input_sizes: Input tensor dimensions in
|
|
[batch, input_rows, input_cols, input_depth].
|
|
filter_sizes: Filter tensor dimensions in
|
|
[kernel_rows, kernel_cols, input_depth, output_depth].
|
|
strides: Strides.
|
|
dilations: RHS dilations.
|
|
padding: Padding type.
|
|
data_format_src: Data format input is in.
|
|
data_format_dst: Data format verification will run and input is converted
|
|
to.
|
|
expected: Expected output.
|
|
"""
|
|
|
|
total_size_1 = np.prod(input_sizes)
|
|
total_size_2 = np.prod(filter_sizes)
|
|
x1 = np.arange(1, total_size_1 + 1, dtype=np.float32).reshape(input_sizes)
|
|
x2 = np.arange(1, total_size_2 + 1, dtype=np.float32).reshape(filter_sizes)
|
|
strides = [1] + strides + [1]
|
|
if dilations is None:
|
|
dilations = [1, 1]
|
|
dilations = [1] + dilations + [1]
|
|
|
|
# Convert between data formats.
|
|
expected = test_utils.ConvertBetweenDataFormats(expected, data_format_src,
|
|
data_format_dst)
|
|
x1 = test_utils.ConvertBetweenDataFormats(x1, data_format_src,
|
|
data_format_dst)
|
|
input_sizes = test_utils.PermuteDimsBetweenDataFormats(
|
|
input_sizes, data_format_src, data_format_dst)
|
|
strides = test_utils.PermuteDimsBetweenDataFormats(strides, data_format_src,
|
|
data_format_dst)
|
|
dilations = test_utils.PermuteDimsBetweenDataFormats(
|
|
dilations, data_format_src, data_format_dst)
|
|
|
|
with self.session() as sess:
|
|
t1 = array_ops.placeholder(dtypes.float32, shape=input_sizes)
|
|
t2 = array_ops.placeholder(dtypes.float32, shape=filter_sizes)
|
|
with self.test_scope():
|
|
out = nn_ops.conv2d(
|
|
t1,
|
|
t2,
|
|
strides=strides,
|
|
padding=padding,
|
|
data_format=data_format_dst,
|
|
dilations=dilations)
|
|
|
|
value = sess.run(out, {t1: x1, t2: x2})
|
|
self.assertAllClose(expected, value, 1e-3)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x1Filter(self, data_format):
|
|
expected_output = np.reshape([
|
|
30.0, 36.0, 42.0, 66.0, 81.0, 96.0, 102.0, 126.0, 150.0, 138.0, 171.0,
|
|
204.0, 174.0, 216.0, 258.0, 210.0, 261.0, 312.0
|
|
], [1, 2, 3, 3])
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[1, 1, 3, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Filter(self, data_format):
|
|
expected_output = np.reshape(
|
|
[2271.0, 2367.0, 2463.0, 2901.0, 3033.0, 3165.0], [1, 1, 2, 3])
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Filter2x1Dilation(self, data_format):
|
|
expected_output = np.array([[[[72], [82], [92]], [[112], [122], [132]]]])
|
|
self._VerifyValues(
|
|
input_sizes=[1, 4, 4, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2Filter(self, data_format):
|
|
expected_output = np.reshape([
|
|
231.0, 252.0, 273.0, 384.0, 423.0, 462.0, 690.0, 765.0, 840.0, 843.0,
|
|
936.0, 1029.0
|
|
], [1, 2, 2, 3])
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[1, 2, 3, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterStride2(self, data_format):
|
|
expected_output = np.reshape([2271.0, 2367.0, 2463.0], [1, 1, 1, 3])
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
strides=[2, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterStride2Same(self, data_format):
|
|
expected_output = np.reshape(
|
|
[2271.0, 2367.0, 2463.0, 1230.0, 1305.0, 1380.0], [1, 1, 2, 3])
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
strides=[2, 2],
|
|
padding="SAME",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2DEmptyDilation(self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[0, 2, 3, 3],
|
|
filter_sizes=[1, 1, 3, 3],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=np.zeros([0, 2, 3, 3]))
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterDilation(self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=np.reshape([2667, 2781, 2895], [1, 1, 1, 3]))
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2FilterDilation(self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[1, 2, 3, 3],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=np.array([[[[231, 252, 273], [384, 423, 462]],
|
|
[[690, 765, 840], [843, 936, 1029]]]]))
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2DKernelSizeMatchesInputSizeDilation(self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
strides=[1, 1],
|
|
dilations=[2, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=np.reshape([108, 128], [1, 1, 1, 2]))
|
|
|
|
|
|
class Conv2DBackpropInputTest(xla_test.XLATestCase, parameterized.TestCase):
|
|
|
|
def _VerifyValues(self,
|
|
input_sizes=None,
|
|
filter_sizes=None,
|
|
out_backprop_sizes=None,
|
|
strides=None,
|
|
dilations=None,
|
|
padding=None,
|
|
data_format_src="NHWC",
|
|
data_format_dst="NHWC",
|
|
expected=None):
|
|
"""Tests that gen_nn_ops.conv2d_backprop_input produces the expected output.
|
|
|
|
Args:
|
|
input_sizes: Input tensor dimensions in
|
|
[batch, input_rows, input_cols, input_depth].
|
|
filter_sizes: Filter tensor dimensions in
|
|
[kernel_rows, kernel_cols, input_depth, output_depth].
|
|
out_backprop_sizes: Output gradients tensor dimensions.
|
|
strides: Strides.
|
|
dilations: Dilations.
|
|
padding: Padding type.
|
|
data_format_src: Data format input is in.
|
|
data_format_dst: Data format verification will run and input is converted
|
|
to.
|
|
expected: Expected output.
|
|
"""
|
|
|
|
total_size_1 = np.prod(filter_sizes)
|
|
total_size_2 = np.prod(out_backprop_sizes)
|
|
x1 = np.arange(1, total_size_1 + 1, dtype=np.float32).reshape(filter_sizes)
|
|
x2 = np.arange(
|
|
1, total_size_2 + 1, dtype=np.float32).reshape(out_backprop_sizes)
|
|
strides = [1] + strides + [1]
|
|
if dilations is not None:
|
|
dilations = [1] + dilations + [1]
|
|
|
|
expected = np.reshape(expected, input_sizes)
|
|
|
|
# Convert between data formats.
|
|
expected = test_utils.ConvertBetweenDataFormats(expected, data_format_src,
|
|
data_format_dst)
|
|
x2 = test_utils.ConvertBetweenDataFormats(x2, data_format_src,
|
|
data_format_dst)
|
|
input_sizes = test_utils.PermuteDimsBetweenDataFormats(
|
|
input_sizes, data_format_src, data_format_dst)
|
|
out_backprop_sizes = test_utils.PermuteDimsBetweenDataFormats(
|
|
out_backprop_sizes, data_format_src, data_format_dst)
|
|
strides = test_utils.PermuteDimsBetweenDataFormats(strides, data_format_src,
|
|
data_format_dst)
|
|
if dilations is not None:
|
|
dilations = test_utils.PermuteDimsBetweenDataFormats(
|
|
dilations, data_format_src, data_format_dst)
|
|
|
|
with self.session() as sess:
|
|
t1 = array_ops.placeholder(dtypes.float32, shape=filter_sizes)
|
|
t2 = array_ops.placeholder(dtypes.float32, shape=out_backprop_sizes)
|
|
with self.test_scope():
|
|
out = gen_nn_ops.conv2d_backprop_input(
|
|
input_sizes=input_sizes,
|
|
filter=t1,
|
|
out_backprop=t2,
|
|
strides=strides,
|
|
dilations=dilations,
|
|
padding=padding,
|
|
data_format=data_format_dst)
|
|
|
|
value = sess.run(out, {t1: x1, t2: x2})
|
|
self.assertAllEqual(input_sizes, value.shape)
|
|
self.assertAllClose(expected, value, 1e-3)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x1Filter(self, data_format):
|
|
expected_output = [
|
|
5, 11, 17, 11, 25, 39, 17, 39, 61, 23, 53, 83, 29, 67, 105, 35, 81, 127,
|
|
41, 95, 149, 47, 109, 171, 53, 123, 193, 59, 137, 215, 65, 151, 237, 71,
|
|
165, 259, 77, 179, 281, 83, 193, 303, 89, 207, 325, 95, 221, 347.
|
|
]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 4, 4, 3],
|
|
filter_sizes=[1, 1, 3, 2],
|
|
out_backprop_sizes=[1, 4, 4, 2],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2FilterStride3Width5(self, data_format):
|
|
expected_output = [1, 2, 0, 2, 4]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 1, 5, 1],
|
|
filter_sizes=[1, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[3, 3],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2FilterStride3Width6(self, data_format):
|
|
expected_output = [1, 2, 0, 2, 4, 0]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 1, 6, 1],
|
|
filter_sizes=[1, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[3, 3],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2FilterStride3Width7(self, data_format):
|
|
expected_output = [1, 2, 0, 2, 4, 0, 0]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 1, 7, 1],
|
|
filter_sizes=[1, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[3, 3],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterC1Same(self, data_format):
|
|
expected_output = [1, 4, 7, 7, 23, 33]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[1, 2, 3, 1],
|
|
strides=[1, 1],
|
|
padding="SAME",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Filter(self, data_format):
|
|
expected_output = [
|
|
14, 32, 50, 100, 163, 226, 167, 212, 257, 122, 140, 158, 478, 541, 604,
|
|
437, 482, 527
|
|
]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
out_backprop_sizes=[1, 1, 2, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterSame(self, data_format):
|
|
expected_output = [
|
|
14, 32, 50, 100, 163, 226, 217, 334, 451, 190, 307, 424, 929, 1217,
|
|
1505, 1487, 1883, 2279
|
|
]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
out_backprop_sizes=[1, 2, 3, 3],
|
|
strides=[1, 1],
|
|
padding="SAME",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2Filter(self, data_format):
|
|
expected_output = [1, 4, 4, 3, 10, 8, 5, 16, 12]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[1, 2, 1, 1],
|
|
out_backprop_sizes=[1, 3, 2, 1],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2FilterSame(self, data_format):
|
|
expected_output = [1, 4, 7, 4, 13, 16, 7, 22, 25]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[1, 2, 1, 1],
|
|
out_backprop_sizes=[1, 3, 3, 1],
|
|
strides=[1, 1],
|
|
padding="SAME",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterStride2(self, data_format):
|
|
expected_output = [1, 2, 5, 4, 6, 0, 0, 0, 0, 0, 3, 6, 13, 8, 12]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 5, 1],
|
|
filter_sizes=[1, 3, 1, 1],
|
|
out_backprop_sizes=[1, 2, 2, 1],
|
|
strides=[2, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterStride2Same(self, data_format):
|
|
expected_output = [1, 2, 2, 3, 4, 6]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[2, 2],
|
|
padding="SAME",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Depth3ValidBackpropInputStride1x1Dilation2x1(
|
|
self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 6, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 5, 1],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=[1, 4, 7, 10, 13, 10, 0, 0, 0, 0, 0, 0, 3, 10, 17, 24, 31, 20])
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Depth1ValidBackpropInputDilation1x2(self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 1, 1],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=[1, 0, 2, 3, 0, 4])
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2DEmptyBackpropInputDilation1x2(self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[0, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[0, 1, 1, 1],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=np.zeros([0]))
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Depth3ValidBackpropInputDilation2x1(self, data_format):
|
|
# The GPU version of this test is not very stable. So adjusting the
|
|
# error threshold to 1e-4.
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 2, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
out_backprop_sizes=[1, 1, 1, 3],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=[
|
|
14, 32, 50, 68, 86, 104, 0, 0, 0, 0, 0, 0, 122, 140, 158, 176, 194,
|
|
212
|
|
])
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2DKernelSizeMatchesInputSizeBackpropInputDilation2x2(
|
|
self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
out_backprop_sizes=[1, 1, 1, 2],
|
|
strides=[1, 1],
|
|
dilations=[2, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=[5, 0, 11, 0, 0, 0, 17, 0, 23])
|
|
|
|
|
|
class Conv2DBackpropFilterTest(xla_test.XLATestCase, parameterized.TestCase):
|
|
|
|
def _VerifyValues(self,
|
|
input_sizes=None,
|
|
filter_sizes=None,
|
|
out_backprop_sizes=None,
|
|
strides=None,
|
|
dilations=None,
|
|
padding=None,
|
|
data_format_src="NHWC",
|
|
data_format_dst="NHWC",
|
|
expected=None):
|
|
"""Tests that gen_nn_ops.conv2d_backprop_filter produces the right output.
|
|
|
|
Args:
|
|
input_sizes: Input tensor dimensions in
|
|
[batch, input_rows, input_cols, input_depth].
|
|
filter_sizes: Filter tensor dimensions in
|
|
[kernel_rows, kernel_cols, input_depth, output_depth].
|
|
out_backprop_sizes: Output gradients tensor dimensions.
|
|
strides: Stride.
|
|
dilations: Dilations.
|
|
padding: Padding type.
|
|
data_format_src: Data format input is in.
|
|
data_format_dst: Data format verification will run and input is converted
|
|
to.
|
|
expected: Expected output.
|
|
"""
|
|
|
|
total_size_1 = np.prod(input_sizes)
|
|
total_size_2 = np.prod(out_backprop_sizes)
|
|
x1 = np.arange(1, total_size_1 + 1, dtype=np.float32).reshape(input_sizes)
|
|
x2 = np.arange(
|
|
1, total_size_2 + 1, dtype=np.float32).reshape(out_backprop_sizes)
|
|
strides = [1] + strides + [1]
|
|
if dilations is not None:
|
|
dilations = [1] + dilations + [1]
|
|
|
|
expected = np.reshape(expected, filter_sizes)
|
|
|
|
# Convert between data formats.
|
|
x1 = test_utils.ConvertBetweenDataFormats(x1, data_format_src,
|
|
data_format_dst)
|
|
x2 = test_utils.ConvertBetweenDataFormats(x2, data_format_src,
|
|
data_format_dst)
|
|
input_sizes = test_utils.PermuteDimsBetweenDataFormats(
|
|
input_sizes, data_format_src, data_format_dst)
|
|
out_backprop_sizes = test_utils.PermuteDimsBetweenDataFormats(
|
|
out_backprop_sizes, data_format_src, data_format_dst)
|
|
strides = test_utils.PermuteDimsBetweenDataFormats(strides, data_format_src,
|
|
data_format_dst)
|
|
if dilations is not None:
|
|
dilations = test_utils.PermuteDimsBetweenDataFormats(
|
|
dilations, data_format_src, data_format_dst)
|
|
|
|
with self.session() as sess:
|
|
t1 = array_ops.placeholder(dtypes.float32, shape=input_sizes)
|
|
t2 = array_ops.placeholder(dtypes.float32, shape=out_backprop_sizes)
|
|
with self.test_scope():
|
|
tensor = gen_nn_ops.conv2d_backprop_filter(
|
|
input=t1,
|
|
filter_sizes=filter_sizes,
|
|
out_backprop=t2,
|
|
strides=strides,
|
|
dilations=dilations,
|
|
padding=padding,
|
|
data_format=data_format_dst)
|
|
|
|
value = sess.run(tensor, {t1: x1, t2: x2})
|
|
self.assertAllEqual(filter_sizes, value.shape)
|
|
self.assertAllClose(expected, value, 1e-3)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x1Filter(self, data_format):
|
|
expected_output = [8056, 8432, 8312, 8704, 8568, 8976]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 4, 4, 3],
|
|
filter_sizes=[1, 1, 3, 2],
|
|
out_backprop_sizes=[1, 4, 4, 2],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2Filter(self, data_format):
|
|
expected_output = [120, 141]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[1, 2, 1, 1],
|
|
out_backprop_sizes=[1, 3, 2, 1],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterDepth1(self, data_format):
|
|
expected_output = [5, 8, 14, 17]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Filter(self, data_format):
|
|
expected_output = [
|
|
17, 22, 27, 22, 29, 36, 27, 36, 45, 32, 43, 54, 37, 50, 63, 42, 57, 72,
|
|
62, 85, 108, 67, 92, 117, 72, 99, 126, 77, 106, 135, 82, 113, 144, 87,
|
|
120, 153
|
|
]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
out_backprop_sizes=[1, 1, 2, 3],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2FilterStride3Width5(self, data_format):
|
|
expected_output = [9, 12]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 1, 5, 1],
|
|
filter_sizes=[1, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[3, 3],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2FilterStride3Width6(self, data_format):
|
|
expected_output = [9, 12]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 1, 6, 1],
|
|
filter_sizes=[1, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[3, 3],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x2FilterStride3Width7(self, data_format):
|
|
expected_output = [9, 12]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 1, 7, 1],
|
|
filter_sizes=[1, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[3, 3],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x3Filter(self, data_format):
|
|
expected_output = [5, 8, 11]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 1, 4, 1],
|
|
filter_sizes=[1, 3, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[1, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x3FilterSame(self, data_format):
|
|
expected_output = [20, 30, 20]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 1, 4, 1],
|
|
filter_sizes=[1, 3, 1, 1],
|
|
out_backprop_sizes=[1, 1, 4, 1],
|
|
strides=[1, 1],
|
|
padding="SAME",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D1x3FilterSameOutbackprop2(self, data_format):
|
|
expected_output = [7, 10, 3]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 1, 4, 1],
|
|
filter_sizes=[1, 3, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[2, 2],
|
|
padding="SAME",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterC1Same(self, data_format):
|
|
expected_output = [91, 58, 32, 17]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[1, 2, 3, 1],
|
|
strides=[1, 1],
|
|
padding="SAME",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterStride2(self, data_format):
|
|
expected_output = [92, 102, 112]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 5, 1],
|
|
filter_sizes=[1, 3, 1, 1],
|
|
out_backprop_sizes=[1, 2, 2, 1],
|
|
strides=[2, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2FilterStride2Same(self, data_format):
|
|
expected_output = [7, 2, 16, 5]
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 2, 1],
|
|
strides=[2, 2],
|
|
padding="SAME",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=expected_output)
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Depth3ValidBackpropFilterStride1x1Dilation2x1(
|
|
self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 6, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 5, 1],
|
|
strides=[1, 1],
|
|
dilations=[2, 1],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=[55, 70, 235, 250])
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Depth1ValidBackpropFilterDilation1x2(self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 1],
|
|
out_backprop_sizes=[1, 1, 1, 1],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=[1, 3, 4, 6])
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2DEmptyBackpropFilterDilation1x2(self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 2, 3, 1],
|
|
filter_sizes=[2, 2, 1, 0],
|
|
out_backprop_sizes=[1, 1, 1, 0],
|
|
strides=[1, 1],
|
|
dilations=[1, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=np.zeros([0]))
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2D2x2Depth3ValidBackpropFilterDilation2x2(self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 4, 3],
|
|
filter_sizes=[2, 2, 3, 3],
|
|
out_backprop_sizes=[1, 1, 2, 3],
|
|
strides=[1, 1],
|
|
dilations=[2, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=[
|
|
17, 22, 27, 22, 29, 36, 27, 36, 45, 47, 64, 81, 52, 71, 90, 57, 78,
|
|
99, 137, 190, 243, 142, 197, 252, 147, 204, 261, 167, 232, 297, 172,
|
|
239, 306, 177, 246, 315
|
|
])
|
|
|
|
@parameterized.named_parameters(*DATA_FORMATS)
|
|
def testConv2DKernelSizeMatchesInputSizeBackpropFilterDilation2x2(
|
|
self, data_format):
|
|
self._VerifyValues(
|
|
input_sizes=[1, 3, 3, 1],
|
|
filter_sizes=[2, 2, 1, 2],
|
|
out_backprop_sizes=[1, 1, 1, 2],
|
|
strides=[1, 1],
|
|
dilations=[2, 2],
|
|
padding="VALID",
|
|
data_format_src="NHWC",
|
|
data_format_dst=data_format,
|
|
expected=[1, 2, 3, 6, 7, 14, 9, 18])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|