We do not support complex with certain optimizers such as Ftrl, FtrlV2, AdamWithAmsgrad, AdaMax, AddSign & PowerSign since they may use missing operations on complex values such as sqrt. Fixes #32774 PiperOrigin-RevId: 277953548 Change-Id: Ia075aa5c3f944de932d71b9741d626f7ebe5416f
190 lines
7.9 KiB
Python
190 lines
7.9 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Adam."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import resource_variable_ops
|
|
from tensorflow.python.ops import variable_scope
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.training import adam
|
|
|
|
|
|
def adam_update_numpy(param,
|
|
g_t,
|
|
t,
|
|
m,
|
|
v,
|
|
alpha=0.001,
|
|
beta1=0.9,
|
|
beta2=0.999,
|
|
epsilon=1e-8):
|
|
alpha_t = alpha * np.sqrt(1 - beta2**t) / (1 - beta1**t)
|
|
|
|
m_t = beta1 * m + (1 - beta1) * g_t
|
|
v_t = beta2 * v + (1 - beta2) * g_t * g_t
|
|
|
|
param_t = param - alpha_t * m_t / (np.sqrt(v_t) + epsilon)
|
|
return param_t, m_t, v_t
|
|
|
|
|
|
class AdamOptimizerTest(xla_test.XLATestCase):
|
|
|
|
def testBasic(self):
|
|
for dtype in self.float_types | self.complex_types:
|
|
# TODO: test fails for float16 due to excessive precision requirements.
|
|
if dtype in [np.float16, dtypes.bfloat16.as_numpy_dtype]:
|
|
continue
|
|
with self.session(), self.test_scope():
|
|
variable_scope.get_variable_scope().set_use_resource(True)
|
|
|
|
# Initialize variables for numpy implementation.
|
|
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
|
|
var0_np = np.array([1.0, 2.0], dtype=dtype)
|
|
grads0_np = np.array([0.1, 0.1], dtype=dtype)
|
|
var1_np = np.array([3.0, 4.0], dtype=dtype)
|
|
grads1_np = np.array([0.01, 0.01], dtype=dtype)
|
|
|
|
var0 = resource_variable_ops.ResourceVariable(var0_np)
|
|
var1 = resource_variable_ops.ResourceVariable(var1_np)
|
|
grads0 = array_ops.placeholder(dtype)
|
|
grads1 = array_ops.placeholder(dtype)
|
|
opt = adam.AdamOptimizer()
|
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
variables.global_variables_initializer().run()
|
|
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
|
|
beta1_power, beta2_power = opt._get_beta_accumulators()
|
|
|
|
# Run 3 steps of Adam
|
|
for t in range(1, 4):
|
|
self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power))
|
|
self.assertAllCloseAccordingToType(0.999**t,
|
|
self.evaluate(beta2_power))
|
|
update.run(feed_dict={grads0: grads0_np, grads1: grads1_np})
|
|
|
|
var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0)
|
|
var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1)
|
|
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
|
|
|
|
def testTensorLearningRate(self):
|
|
for dtype in self.float_types | self.complex_types:
|
|
# TODO: test fails for float16 due to excessive precision requirements.
|
|
if dtype in [np.float16, dtypes.bfloat16.as_numpy_dtype]:
|
|
continue
|
|
with self.session(), self.test_scope():
|
|
variable_scope.get_variable_scope().set_use_resource(True)
|
|
|
|
# Initialize variables for numpy implementation.
|
|
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
|
|
var0_np = np.array([1.0, 2.0], dtype=dtype)
|
|
grads0_np = np.array([0.1, 0.1], dtype=dtype)
|
|
var1_np = np.array([3.0, 4.0], dtype=dtype)
|
|
grads1_np = np.array([0.01, 0.01], dtype=dtype)
|
|
|
|
var0 = resource_variable_ops.ResourceVariable(var0_np)
|
|
var1 = resource_variable_ops.ResourceVariable(var1_np)
|
|
grads0 = array_ops.placeholder(dtype)
|
|
grads1 = array_ops.placeholder(dtype)
|
|
opt = adam.AdamOptimizer(constant_op.constant(0.001))
|
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
variables.global_variables_initializer().run()
|
|
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
|
|
beta1_power, beta2_power = opt._get_beta_accumulators()
|
|
|
|
# Run 3 steps of Adam
|
|
for t in range(1, 4):
|
|
self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power))
|
|
self.assertAllCloseAccordingToType(0.999**t,
|
|
self.evaluate(beta2_power))
|
|
update.run(feed_dict={grads0: grads0_np, grads1: grads1_np})
|
|
|
|
var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0)
|
|
var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1)
|
|
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
|
|
|
|
def testSharing(self):
|
|
for dtype in self.float_types | self.complex_types:
|
|
# TODO: test fails for float16 due to excessive precision requirements.
|
|
if dtype in [np.float16, dtypes.bfloat16.as_numpy_dtype]:
|
|
continue
|
|
with self.session(), self.test_scope():
|
|
variable_scope.get_variable_scope().set_use_resource(True)
|
|
|
|
# Initialize variables for numpy implementation.
|
|
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
|
|
var0_np = np.array([1.0, 2.0], dtype=dtype)
|
|
grads0_np = np.array([0.1, 0.1], dtype=dtype)
|
|
var1_np = np.array([3.0, 4.0], dtype=dtype)
|
|
grads1_np = np.array([0.01, 0.01], dtype=dtype)
|
|
|
|
var0 = resource_variable_ops.ResourceVariable(var0_np)
|
|
var1 = resource_variable_ops.ResourceVariable(var1_np)
|
|
grads0 = array_ops.placeholder(dtype)
|
|
grads1 = array_ops.placeholder(dtype)
|
|
opt = adam.AdamOptimizer()
|
|
update1 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
update2 = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
variables.global_variables_initializer().run()
|
|
|
|
beta1_power, beta2_power = opt._get_beta_accumulators()
|
|
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
|
|
# Run 3 steps of intertwined Adam1 and Adam2.
|
|
for t in range(1, 4):
|
|
self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power))
|
|
self.assertAllCloseAccordingToType(0.999**t,
|
|
self.evaluate(beta2_power))
|
|
if t % 2 == 0:
|
|
update1.run(feed_dict={grads0: grads0_np, grads1: grads1_np})
|
|
else:
|
|
update2.run(feed_dict={grads0: grads0_np, grads1: grads1_np})
|
|
|
|
var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0)
|
|
var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1)
|
|
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|