STT-tensorflow/tensorflow/compiler/mlir/python/BUILD
Geoffrey Martin-Noble 1248bc9c61 Use Bazel target names aligned with upstream library names
PiperOrigin-RevId: 315818787
Change-Id: I5388e0e071a943b240ff76b1639bbaab83d606a1
2020-06-10 19:57:02 -07:00

49 lines
1.8 KiB
Python

package(
default_visibility = ["//visibility:public"],
licenses = ["notice"], # Apache 2.0
)
cc_library(
name = "mlir",
srcs = ["mlir.cc"],
hdrs = ["mlir.h"],
deps = [
"//tensorflow/c:tf_status",
"//tensorflow/c:tf_status_helper",
"//tensorflow/compiler/mlir/tensorflow:convert_graphdef",
"//tensorflow/compiler/mlir/tensorflow:error_util",
# (yongtang) The graph_optimization_pass_registration needs to be part
# of a shared object that will be loaded whenever `import tensorflow`
# is run. The natural place is libtensorflow_framework.so.
# While adding graph_optimization_pass_registration to
# libtensorflow_framework.so is possible with some modification in
# dependency, many tests will fail due to multiple copies of LLVM.
# See https://github.com/tensorflow/tensorflow/pull/39231 for details.
# Alternatively, we place graph_optimization_pass_registration here
# because:
# - tensorflow/python/_pywrap_mlir.so already depends on LLVM anyway
# - tensorflow/python/_pywrap_mlir.so always loaded as part of python
# binding
# TODO: It might be still preferrable to place graph_optimization_pass
# as part of the libtensorflow_framework.so, as it is the central
# place for core related components.
"//tensorflow/compiler/mlir/tensorflow:graph_optimization_pass_registration",
"//tensorflow/compiler/mlir/tensorflow:import_utils",
"@llvm-project//llvm:Support",
"@llvm-project//mlir:IR",
"@llvm-project//mlir:Parser",
"@llvm-project//mlir:Pass",
],
alwayslink = 1,
)
filegroup(
name = "pywrap_mlir_hdrs",
srcs = [
"mlir.h",
],
visibility = [
"//tensorflow/python:__pkg__",
],
)