Nicolas Vasilache 6c553ffc4d Refactor Linalg ops to loop lowering (NFC)
This CL modifies the LowerLinalgToLoopsPass to use RewritePattern.
This will make it easier to inline Linalg generic functions and regions when emitting to loops in a subsequent CL.

PiperOrigin-RevId: 261894120
2019-08-06 05:44:25 -07:00

543 lines
21 KiB
C++

//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the linalg dialect Tiling pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/EDSC/Helpers.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Linalg/IR/LinalgOps.h"
#include "mlir/Linalg/IR/LinalgTypes.h"
#include "mlir/Linalg/Passes.h"
#include "mlir/Linalg/Utils/Intrinsics.h"
#include "mlir/Linalg/Utils/Utils.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/STLExtras.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/Support/CommandLine.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using namespace mlir::linalg::intrinsics;
using namespace mlir::loop;
#define DEBUG_TYPE "linalg-tiling"
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
static llvm::cl::list<unsigned>
clTileSizes("linalg-tile-sizes",
llvm::cl::desc("Tile sizes by which to tile linalg operations"),
llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated,
llvm::cl::cat(clOptionsCategory));
static llvm::cl::opt<bool> clPromoteFullTileViews(
"linalg-tile-promote-full-tile-views",
llvm::cl::desc("Create scoped local buffers for tiled views "),
llvm::cl::init(false), llvm::cl::cat(clOptionsCategory));
static bool isZero(Value *v) {
return isa_and_nonnull<ConstantIndexOp>(v->getDefiningOp()) &&
cast<ConstantIndexOp>(v->getDefiningOp()).getValue() == 0;
}
// Creates a number of ranges equal to the number of non-zero in `tileSizes`.
// One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
// one entry per surrounding loop. It uses zero as the convention that a
// particular loop is not tiled. This convention simplifies implementations by
// avoiding affine map manipulations.
// The returned ranges correspond to the loop ranges, in the proper order, that
// are tiled and for which new loops will be created.
static SmallVector<SubViewOp::Range, 4>
makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
ArrayRef<Value *> allViewSizes,
ArrayRef<Value *> allTileSizes, OperationFolder &folder) {
assert(allTileSizes.size() == map.getNumResults());
// Apply `map` to get view sizes in loop order.
auto viewSizes = applyMapToValues(b, loc, map, allViewSizes, folder);
SmallVector<Value *, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
for (int idx = tileSizes.size() - 1; idx >= 0; --idx) {
if (isZero(tileSizes[idx])) {
viewSizes.erase(viewSizes.begin() + idx);
tileSizes.erase(tileSizes.begin() + idx);
}
}
// Create a new range with the applied tile sizes.
SmallVector<SubViewOp::Range, 4> res;
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) {
res.push_back(SubViewOp::Range{constant_index(folder, 0), viewSizes[idx],
tileSizes[idx]});
}
return res;
}
namespace {
// Helper visitor to determine whether an AffineExpr is tiled.
// This is achieved by traversing every AffineDimExpr with position `pos` and
// checking whether the corresponding `tileSizes[pos]` is non-zero.
// This also enforces only positive coefficients occur in multiplications.
//
// Example:
// `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
//
struct TileCheck : public AffineExprVisitor<TileCheck> {
TileCheck(ArrayRef<Value *> tileSizes)
: isTiled(false), tileSizes(tileSizes) {}
void visitDimExpr(AffineDimExpr expr) {
isTiled |= !isZero(tileSizes[expr.getPosition()]);
}
void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
visit(expr.getLHS());
visit(expr.getRHS());
if (expr.getKind() == mlir::AffineExprKind::Mul)
assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
"nonpositive multipliying coefficient");
}
bool isTiled;
ArrayRef<Value *> tileSizes;
};
} // namespace
static bool isTiled(AffineExpr expr, ArrayRef<Value *> tileSizes) {
if (!expr)
return false;
TileCheck t(tileSizes);
t.visit(expr);
return t.isTiled;
}
// Checks whether the view with index `viewIndex` within `linalgOp` varies with
// respect to a non-zero `tileSize`.
static bool isTiled(AffineMap map, ArrayRef<Value *> tileSizes) {
if (!map)
return false;
for (unsigned r = 0; r < map.getNumResults(); ++r)
if (isTiled(map.getResult(r), tileSizes))
return true;
return false;
}
static SmallVector<Value *, 4>
makeTiledViews(OpBuilder &b, Location loc, LinalgOp linalgOp,
ArrayRef<Value *> ivs, ArrayRef<Value *> tileSizes,
ArrayRef<Value *> viewSizes, OperationFolder &folder) {
assert(ivs.size() == static_cast<size_t>(llvm::count_if(
llvm::make_range(tileSizes.begin(), tileSizes.end()),
[](Value *v) { return !isZero(v); })) &&
"expected as many ivs as non-zero sizes");
using edsc::intrinsics::select;
using edsc::op::operator+;
using edsc::op::operator<;
// Construct (potentially temporary) mins and maxes on which to apply maps
// that define tile subviews.
SmallVector<Value *, 8> mins, maxes;
for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
if (isZero(tileSizes[idx])) {
mins.push_back(constant_index(folder, 0));
maxes.push_back(viewSizes[idx]);
} else {
ValueHandle lb(ivs[idxIvs++]), step(tileSizes[idx]);
mins.push_back(lb);
maxes.push_back(lb + step);
}
}
auto *op = linalgOp.getOperation();
SmallVector<Value *, 4> res;
res.reserve(op->getNumOperands());
auto viewIteratorBegin = linalgOp.getInputsAndOutputs().begin();
for (unsigned viewIndex = 0; viewIndex < linalgOp.getNumInputsAndOutputs();
++viewIndex) {
Value *view = *(viewIteratorBegin + viewIndex);
unsigned viewRank = view->getType().cast<ViewType>().getRank();
auto map = loopToOperandRangesMaps(linalgOp)[viewIndex];
// If the view is not tiled, we can use it as is.
if (!isTiled(map, tileSizes)) {
res.push_back(view);
continue;
}
// Construct a new subview for the tile.
SmallVector<SubViewOp::Range, 4> subViewOperands;
subViewOperands.reserve(viewRank * 3);
for (unsigned r = 0; r < viewRank; ++r) {
if (!isTiled(map.getSubMap({r}), tileSizes)) {
subViewOperands.push_back(SubViewOp::Range{
constant_index(folder, 0), linalg::intrinsics::dim(view, r),
constant_index(folder, 1)});
continue;
}
auto m = map.getSubMap({r});
auto *min = applyMapToValues(b, loc, m, mins, folder).front();
auto *max = applyMapToValues(b, loc, m, maxes, folder).front();
// Tiling creates a new slice at the proper index, the slice step is 1
// (i.e. the slice view does not subsample, stepping occurs in the loop).
subViewOperands.push_back(
SubViewOp::Range{min, max, constant_index(folder, 1)});
}
res.push_back(b.create<SubViewOp>(loc, view, subViewOperands));
}
// Traverse the mins/maxes and erase those that don't have uses left.
mins.append(maxes.begin(), maxes.end());
for (auto *v : mins)
if (v->use_empty())
v->getDefiningOp()->erase();
return res;
}
static AffineMap getAffineDifferenceMap(MLIRContext *context) {
AffineExpr d0(getAffineDimExpr(0, context)), d1(getAffineDimExpr(1, context));
return AffineMap::get(2, 0, {d0 - d1});
}
static Value *allocBuffer(Type elementType, Value *size) {
if (auto cst = dyn_cast_or_null<ConstantIndexOp>(size->getDefiningOp()))
return buffer_alloc(
BufferType::get(size->getContext(), elementType, cst.getValue()));
return buffer_alloc(BufferType::get(size->getContext(), elementType), size);
}
// Performs promotion of a `subView` into a local buffer of the size of the
// *ranges* of the `subView`. This produces a buffer whose size may be bigger
// than the actual size of the `subView` at the boundaries.
// This is related to the full/partial tile problem.
// Returns a PromotionInfo containing a `buffer`, `fullLocalView` and
// `partialLocalView` such that:
// * `buffer` is always the size of the full tile.
// * `fullLocalView` is a dense contiguous view into that buffer.
// * `partialLocalView` is a dense non-contiguous slice of `fullLocalView`
// that corresponds to the size of `subView` and accounting for boundary
// effects.
// The point of the full tile buffer is that constant static tile sizes are
// folded and result in a buffer type with statically known size and alignment
// properties.
// To account for general boundary effects, padding must be performed on the
// boundary tiles. For now this is done with an unconditional `fill` op followed
// by a partial `copy` op.
static PromotionInfo promoteFullTileBuffer(OpBuilder &b, Location loc,
SubViewOp subView,
OperationFolder &folder) {
auto zero = constant_index(folder, 0);
auto one = constant_index(folder, 1);
auto viewType = subView.getViewType();
auto rank = viewType.getRank();
Value *allocSize = one;
SmallVector<Value *, 8> fullRanges, partialRanges;
fullRanges.reserve(rank);
partialRanges.reserve(rank);
for (auto en : llvm::enumerate(subView.getRanges())) {
auto rank = en.index();
auto rangeValue = en.value();
Value *d =
isa<linalg::DimOp>(rangeValue.max->getDefiningOp())
? rangeValue.max
: applyMapToValues(b, loc, getAffineDifferenceMap(b.getContext()),
{rangeValue.max, rangeValue.min}, folder)
.front();
allocSize = muli(folder, allocSize, d).getValue();
fullRanges.push_back(range(folder, zero, d, one));
partialRanges.push_back(
range(folder, zero, linalg::intrinsics::dim(subView, rank), one));
}
auto *buffer = allocBuffer(viewType.getElementType(), allocSize);
auto fullLocalView = view(buffer, fullRanges);
auto partialLocalView = slice(fullLocalView, partialRanges);
return PromotionInfo{buffer, fullLocalView, partialLocalView};
}
// Performs promotion of a view `v` into a local buffer of the size of the
// view. This produces a buffer whose size is exactky the size of `v`.
// Returns a PromotionInfo containing a `buffer`, `fullLocalView` and
// `partialLocalView` such that:
// * `buffer` is always the size of the view.
// * `partialLocalView` is a dense contiguous view into that buffer.
// * `fullLocalView` is equal to `partialLocalView`.
// The point of the full tile buffer is that constant static tile sizes are
// folded and result in a buffer type with statically known size and alignment
// properties.
static PromotionInfo promotePartialTileBuffer(OpBuilder &b, Location loc,
Value *v,
OperationFolder &folder) {
auto zero = constant_index(folder, 0);
auto one = constant_index(folder, 1);
auto viewType = v->getType().cast<ViewType>();
auto rank = viewType.getRank();
Value *allocSize = one;
SmallVector<Value *, 8> partialRanges;
partialRanges.reserve(rank);
for (unsigned r = 0; r < rank; ++r) {
Value *d = linalg::intrinsics::dim(v, r);
allocSize = muli(folder, allocSize, d).getValue();
partialRanges.push_back(range(folder, zero, d, one));
}
auto *buffer = allocBuffer(viewType.getElementType(), allocSize);
auto partialLocalView = view(folder, buffer, partialRanges);
return PromotionInfo{buffer, partialLocalView, partialLocalView};
}
SmallVector<PromotionInfo, 8>
mlir::linalg::promoteLinalgViews(OpBuilder &b, Location loc,
ArrayRef<Value *> views,
OperationFolder &folder) {
if (views.empty())
return {};
ScopedContext scope(b, loc);
SmallVector<PromotionInfo, 8> res;
res.reserve(views.size());
DenseMap<Value *, PromotionInfo> promotionInfo;
for (auto *v : views) {
PromotionInfo pi;
if (auto subView = dyn_cast<SubViewOp>(v->getDefiningOp()))
pi = promoteFullTileBuffer(b, loc, subView, folder);
else
pi = promotePartialTileBuffer(b, loc, v, folder);
promotionInfo.insert(std::make_pair(v, pi));
res.push_back(pi);
}
for (auto *v : views) {
auto info = promotionInfo.find(v);
if (info == promotionInfo.end())
continue;
auto viewType = v->getType().cast<ViewType>();
// TODO(ntv): value to fill with should be related to the operation.
// For now, just use APFloat(0.0f).
auto t = viewType.getElementType().cast<FloatType>();
Value *fillVal = constant_float(folder, APFloat(0.0f), t);
// TODO(ntv): fill is only necessary if `promotionInfo` has a full local
// view that is different from the partial local view and we are on the
// boundary.
fill(info->second.fullLocalView, fillVal);
}
for (auto *v : views) {
auto info = promotionInfo.find(v);
if (info == promotionInfo.end())
continue;
copy(v, info->second.partialLocalView);
}
return res;
}
llvm::Optional<TiledLinalgOp>
mlir::linalg::tileLinalgOp(LinalgOp op, ArrayRef<Value *> tileSizes,
OperationFolder &folder,
ArrayRef<bool> viewsToPromote) {
// 1. Enforce the convention that "tiling by zero" skips tiling a particular
// dimension. This convention is significantly simpler to handle instead of
// adjusting affine maps to account for missing dimensions.
assert(op.getNumParallelLoops() + op.getNumReductionLoops() +
op.getNumWindowLoops() ==
tileSizes.size() &&
"expected matching number of tile sizes and loops");
OpBuilder builder(op.getOperation());
ScopedContext scope(builder, op.getLoc());
// 2. Build the tiled loop ranges.
auto viewSizes = getViewSizes(op);
// The flattened loopToOperandRangesMaps is expected to be an invertible
// permutation map (asserted in the inverse calculation).
auto viewSizesToLoopsMap =
inversePermutation(concatAffineMaps(loopToOperandRangesMaps(op)));
assert(viewSizesToLoopsMap && "expected invertible map");
auto loopRanges =
makeTiledLoopRanges(scope.getBuilder(), scope.getLocation(),
viewSizesToLoopsMap, viewSizes, tileSizes, folder);
// 3. Create the tiled loops.
LinalgOp res = op;
SmallVector<IndexHandle, 4> ivs(loopRanges.size());
auto pivs = makeIndexHandlePointers(ivs);
LoopNestRangeBuilder(pivs, loopRanges)([&] {
auto b = ScopedContext::getBuilder();
auto loc = ScopedContext::getLocation();
SmallVector<Value *, 4> ivValues(ivs.begin(), ivs.end());
auto views =
makeTiledViews(b, loc, op, ivValues, tileSizes, viewSizes, folder);
// If no promotion, we are done.
auto promote = !viewsToPromote.empty() &&
llvm::any_of(llvm::make_range(viewsToPromote.begin(),
viewsToPromote.end()),
[](bool b) { return b; });
if (!promote) {
auto operands = getAssumedNonViewOperands(op);
views.append(operands.begin(), operands.end());
res = op.create(b, loc, views, op.getAttrs());
return;
}
// 4. Filter the subset of views that need to be promoted.
SmallVector<Value *, 8> filteredViews;
filteredViews.reserve(views.size());
assert((viewsToPromote.empty() || views.size() == viewsToPromote.size()) &&
"expected viewsToPromote to be empty or of the same size as view");
for (auto it : llvm::zip(views, viewsToPromote)) {
if (!std::get<1>(it))
continue;
filteredViews.push_back(std::get<0>(it));
}
// 5. Promote the specified views and use them in the new op.
auto promotedBufferAndViews =
promoteLinalgViews(b, loc, filteredViews, folder);
SmallVector<Value *, 8> opViews(views.size(), nullptr);
SmallVector<Value *, 8> writebackViews(views.size(), nullptr);
for (unsigned i = 0, promotedIdx = 0, e = opViews.size(); i < e; ++i) {
if (viewsToPromote[i]) {
opViews[i] = promotedBufferAndViews[promotedIdx].fullLocalView;
writebackViews[i] =
promotedBufferAndViews[promotedIdx].partialLocalView;
promotedIdx++;
} else {
opViews[i] = views[i];
}
}
auto operands = getAssumedNonViewOperands(op);
opViews.append(operands.begin(), operands.end());
res = op.create(b, loc, opViews, op.getAttrs());
// 6. Emit write-back for the promoted output views: copy the partial view.
for (unsigned i = 0, e = writebackViews.size(); i < e; ++i) {
bool isOutput = res.getIndexOfOutput(opViews[i]).hasValue();
if (writebackViews[i] && isOutput)
copy(writebackViews[i], views[i]);
}
// 7. Dealloc local buffers.
for (const auto &pi : promotedBufferAndViews)
buffer_dealloc(pi.buffer);
});
// 8. Gather the newly created loops and return them with the new op.
SmallVector<ForOp, 8> loops;
loops.reserve(ivs.size());
for (auto iv : ivs)
loops.push_back(loop::getForInductionVarOwner(iv));
return TiledLinalgOp{res, loops};
}
llvm::Optional<TiledLinalgOp>
mlir::linalg::tileLinalgOp(LinalgOp op, ArrayRef<int64_t> tileSizes,
OperationFolder &folder,
ArrayRef<bool> viewsToPromote) {
if (tileSizes.empty())
return llvm::None;
// The following uses the convention that "tiling by zero" skips tiling a
// particular dimension. This convention is significantly simpler to handle
// instead of adjusting affine maps to account for missing dimensions.
auto nLoops = op.getNumParallelLoops() + op.getNumReductionLoops() +
op.getNumWindowLoops();
tileSizes = tileSizes.take_front(nLoops);
// If only 0 tilings are left, then return.
if (llvm::all_of(tileSizes, [](int64_t v) { return v == 0; }))
return llvm::None;
// Create a builder for tile size constants.
OpBuilder builder(op);
ScopedContext scope(builder, op.getLoc());
// Materialize concrete tile size values to pass the generic tiling function.
SmallVector<Value *, 8> tileSizeValues;
tileSizeValues.reserve(tileSizes.size());
for (auto ts : tileSizes)
tileSizeValues.push_back(constant_index(folder, ts));
// Pad tile sizes with zero values to enforce our convention.
if (tileSizeValues.size() < nLoops) {
for (unsigned i = tileSizeValues.size(); i < nLoops; ++i)
tileSizeValues.push_back(constant_index(folder, 0));
}
return tileLinalgOp(op, tileSizeValues, folder, viewsToPromote);
}
static void tileLinalgOps(FuncOp f, ArrayRef<int64_t> tileSizes,
bool promoteViews) {
OperationFolder folder;
f.walk<LinalgOp>([promoteViews, tileSizes, &folder](LinalgOp op) {
// TODO(ntv) some heuristic here to decide what to promote. Atm it is all or
// nothing.
SmallVector<bool, 8> viewsToPromote(op.getNumInputsAndOutputs(),
promoteViews);
auto opLoopsPair = tileLinalgOp(op, tileSizes, folder, viewsToPromote);
// If tiling occurred successfully, erase old op.
if (opLoopsPair)
op.erase();
});
f.walk<LinalgOp>([](LinalgOp op) {
if (!op.getOperation()->hasNoSideEffect())
return;
if (op.getOperation()->use_empty())
op.erase();
});
}
namespace {
struct LinalgTilingPass : public FunctionPass<LinalgTilingPass> {
LinalgTilingPass() = default;
LinalgTilingPass(ArrayRef<int64_t> sizes, bool promoteViews);
void runOnFunction() {
tileLinalgOps(getFunction(), tileSizes, promoteViews);
}
SmallVector<int64_t, 8> tileSizes;
bool promoteViews;
};
} // namespace
LinalgTilingPass::LinalgTilingPass(ArrayRef<int64_t> sizes, bool promoteViews) {
this->tileSizes.assign(sizes.begin(), sizes.end());
this->promoteViews = promoteViews;
}
FunctionPassBase *
mlir::linalg::createLinalgTilingPass(ArrayRef<int64_t> tileSizes,
bool promoteViews) {
return new LinalgTilingPass(tileSizes, promoteViews);
}
static PassRegistration<LinalgTilingPass>
pass("linalg-tile", "Tile operations in the linalg dialect", [] {
auto *pass = new LinalgTilingPass();
pass->tileSizes.assign(clTileSizes.begin(), clTileSizes.end());
pass->promoteViews = clPromoteFullTileViews;
return pass;
});