69 lines
2.3 KiB
C++
69 lines
2.3 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/model.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
class RoundOpModel : public SingleOpModel {
|
|
public:
|
|
RoundOpModel(std::initializer_list<int> input_shape, TensorType input_type) {
|
|
input_ = AddInput(TensorType_FLOAT32);
|
|
output_ = AddOutput(TensorType_FLOAT32);
|
|
SetBuiltinOp(BuiltinOperator_ROUND, BuiltinOptions_NONE, 0);
|
|
BuildInterpreter({
|
|
input_shape,
|
|
});
|
|
}
|
|
|
|
int input() { return input_; }
|
|
|
|
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
|
|
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
|
|
|
|
private:
|
|
int input_;
|
|
int output_;
|
|
};
|
|
|
|
TEST(RoundOpTest, SingleDim) {
|
|
RoundOpModel model({6}, TensorType_FLOAT32);
|
|
model.PopulateTensor<float>(model.input(), {8.5, 0.0, 3.5, 4.2, -3.5, -4.5});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({8, 0, 4, 4, -4, -4}));
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({6}));
|
|
}
|
|
|
|
TEST(RoundOpTest, MultiDims) {
|
|
RoundOpModel model({2, 1, 1, 6}, TensorType_FLOAT32);
|
|
model.PopulateTensor<float>(
|
|
model.input(), {0.0001, 8.0001, 0.9999, 9.9999, 0.5, -0.0001, -8.0001,
|
|
-0.9999, -9.9999, -0.5, -2.5, 1.5});
|
|
model.Invoke();
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({0, 8, 1, 10, 0, 0, -8, -1, -10, -0, -2, 2}));
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 1, 1, 6}));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|