390 lines
15 KiB
C++
390 lines
15 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <cstdint>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/model.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
class QuantizeOpModel : public SingleOpModel {
|
|
public:
|
|
QuantizeOpModel(const TensorData& input, const TensorData& output) {
|
|
input_ = AddInput(input);
|
|
output_ = AddOutput(output);
|
|
SetBuiltinOp(BuiltinOperator_QUANTIZE, BuiltinOptions_QuantizeOptions,
|
|
CreateQuantizeOptions(builder_).Union());
|
|
|
|
BuildInterpreter({GetShape(input_)});
|
|
}
|
|
|
|
void SetInput(std::initializer_list<float> data) {
|
|
PopulateTensor(input_, data);
|
|
}
|
|
|
|
template <typename T>
|
|
void SetInputAndQuantize(std::initializer_list<float> data) {
|
|
QuantizeAndPopulate<T>(input_, data);
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<T> GetOutput() {
|
|
return ExtractVector<T>(output_);
|
|
}
|
|
|
|
private:
|
|
int input_;
|
|
int output_;
|
|
};
|
|
|
|
TEST(QuantizeOpTest, UINT8) {
|
|
// [-63.5, 64] -> scale=0.5 zero_point=127 for UINT8
|
|
QuantizeOpModel m({TensorType_FLOAT32, {2, 5}},
|
|
{TensorType_UINT8, {2, 5}, 0, 0, 0.5, 127});
|
|
|
|
m.SetInput({-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({0, 1, 2, 3, 4, 251, 252, 253, 254, 255}));
|
|
}
|
|
|
|
TEST(QuantizeOpTest, INT8) {
|
|
// [-63.5, 64] -> scale=0.5, zero_point=1 for INT8
|
|
QuantizeOpModel m({TensorType_FLOAT32, {2, 5}},
|
|
{TensorType_INT8, {2, 5}, 0, 0, 0.5, -1});
|
|
|
|
m.SetInput({-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray(
|
|
{-128, -127, -126, -125, -124, 123, 124, 125, 126, 127}));
|
|
}
|
|
|
|
TEST(QuantizeOpTest, INT16) {
|
|
QuantizeOpModel m({TensorType_FLOAT32, {2, 5}},
|
|
{TensorType_INT16, {2, 5}, 0, 0, 0.005, 0});
|
|
|
|
m.SetInput({-63.5, -63, -3, -2, -1, 1, 2, 3, 63.5, 64});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int16_t>(),
|
|
ElementsAreArray({-12700, -12600, -600, -400, -200, 200, 400, 600,
|
|
12700, 12800}));
|
|
}
|
|
|
|
// Input scale 0.500000, output scale 0.500000, input zeropoint -1, output
|
|
// zeropoint -1
|
|
TEST(QuantizeOpTest, Int8Int8SameScale) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -63.5, 64},
|
|
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {1,3,5,7,9,11,13,15,17,19}.
|
|
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
|
|
}
|
|
|
|
// Input scale 0.500000, output scale 1.000000, input zeropoint -1, output
|
|
// zeropoint -1
|
|
TEST(QuantizeOpTest, Int8Int8LargerScale) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -63.5, 64},
|
|
{TensorType_INT8, {1, 1, 2, 5}, -127, 128});
|
|
|
|
// Input will quantized to {1,3,5,7,9,11,13,15,17,19}.
|
|
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
|
|
}
|
|
|
|
// Input scale 1.000000, output scale 0.500000, input zeropoint -1, output
|
|
// zeropoint -1
|
|
TEST(QuantizeOpTest, Int8Int8SmallerScale) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128},
|
|
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {0,1,2,3,4,5,6,7,8,9}.
|
|
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
|
|
}
|
|
|
|
// Same as previous test, except more data to hit the neon path.
|
|
TEST(QuantizeOpTest, Int8Int8SmallerScaleNeonPath) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 4, 5}, -127, 128},
|
|
{TensorType_INT8, {1, 1, 4, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {0,1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,0}.
|
|
m.SetInputAndQuantize<int8_t>(
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
|
|
19, 17, 15, 13, 11, 9, 7, 5, 3, 1}));
|
|
}
|
|
|
|
// Input scale 0.500000, output scale 0.500000, input zeropoint 127, output
|
|
// zeropoint 127
|
|
TEST(QuantizeOpTest, UInt8UInt8SameScale) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64},
|
|
{TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {129,131,133,135,137,139,141,143,145,147}.
|
|
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147}));
|
|
}
|
|
|
|
// Input scale 0.500000, output scale 1.000000, input zeropoint 127, output
|
|
// zeropoint 127
|
|
TEST(QuantizeOpTest, Uint8Uint8LargerScale) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64},
|
|
{TensorType_UINT8, {1, 1, 2, 5}, -127, 128});
|
|
|
|
// Input will quantized to {129,131,133,135,137,139,141,143,145,147}.
|
|
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({128, 129, 130, 131, 132, 133, 134, 135, 136, 137}));
|
|
}
|
|
|
|
// Input scale 1.000000, output scale 0.500000, input zeropoint 127, output
|
|
// zeropoint 127
|
|
TEST(QuantizeOpTest, Uint8Uint8SmallerScale) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -127, 128},
|
|
{TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {128, 129, 130, 131, 132, 133, 134, 135, 136, 137}.
|
|
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147}));
|
|
}
|
|
|
|
// Same as previous test, except more data to hit the neon path.
|
|
TEST(QuantizeOpTest, Uint8Uint8SmallerScaleNeonPath) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 4, 5}, -127, 128},
|
|
{TensorType_UINT8, {1, 1, 4, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
|
|
// 137, 136, 135, 134, 133, 132, 131, 130, 129, 128}.
|
|
m.SetInputAndQuantize<uint8_t>(
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147,
|
|
147, 145, 143, 141, 139, 137, 135, 133, 131, 129}));
|
|
}
|
|
|
|
// Input scale 1.000000, output scale 1.000000, input zeropoint -1, output
|
|
// zeropoint 127
|
|
TEST(QuantizeOpTest, Int8Uint8SameScale) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128},
|
|
{TensorType_UINT8, {1, 1, 2, 5}, -127, 128});
|
|
|
|
// Input will quantized to {0,1,2,3,4,5,6,7,8,9}.
|
|
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({128, 129, 130, 131, 132, 133, 134, 135, 136, 137}));
|
|
}
|
|
|
|
// Same as previous test, except more data to hit the neon path.
|
|
TEST(QuantizeOpTest, Int8UInt8SameScaleNeonPath) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 4, 5}, -127, 128},
|
|
{TensorType_UINT8, {1, 1, 4, 5}, -127, 128});
|
|
|
|
// Input will quantized to {0,1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,0}.
|
|
m.SetInputAndQuantize<int8_t>(
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
|
|
137, 136, 135, 134, 133, 132, 131, 130, 129, 128}));
|
|
}
|
|
|
|
// Input scale 1.000000, output scale 0.500000, input zeropoint -1, output
|
|
// zeropoint 127
|
|
TEST(QuantizeOpTest, Int8Uint8SmallerScale) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128},
|
|
{TensorType_UINT8, {1, 1, 2, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {0,1,2,3,4,5,6,7,8,9}.
|
|
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147}));
|
|
}
|
|
|
|
// Same as previous test, except more data to hit the neon path.
|
|
TEST(QuantizeOpTest, Int8Uint8SmallerScaleNeonPath) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 4, 5}, -127, 128},
|
|
{TensorType_UINT8, {1, 1, 4, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {0,1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,0}.
|
|
m.SetInputAndQuantize<int8_t>(
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({129, 131, 133, 135, 137, 139, 141, 143, 145, 147,
|
|
147, 145, 143, 141, 139, 137, 135, 133, 131, 129}));
|
|
}
|
|
|
|
// Input scale 1.000000, output scale 2.000000, input zeropoint -1, output
|
|
// zeropoint 127
|
|
TEST(QuantizeOpTest, Int8Uint8LargerScale) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 2, 5}, -127, 128},
|
|
{TensorType_UINT8, {1, 1, 2, 5}, -254, 256});
|
|
|
|
// Input will quantized to {0,1,2,3,4,5,6,7,8,9}.
|
|
m.SetInputAndQuantize<int8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({128, 128, 129, 129, 130, 130, 131, 131, 132, 132}));
|
|
}
|
|
|
|
// Same as previous test, except more data to hit the neon path.
|
|
TEST(QuantizeOpTest, Int8Uint8LargerScaleNeonPath) {
|
|
QuantizeOpModel m({TensorType_INT8, {1, 1, 4, 5}, -127, 128},
|
|
{TensorType_UINT8, {1, 1, 4, 5}, -254, 256});
|
|
|
|
// Input will quantized to {0,1,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,1,0}.
|
|
m.SetInputAndQuantize<int8_t>(
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({128, 128, 129, 129, 130, 130, 131, 131, 132, 132,
|
|
132, 132, 131, 131, 130, 130, 129, 129, 128, 128}));
|
|
}
|
|
|
|
// input scale 0.500000, output scale 0.500000, input zeropoint 127, output
|
|
// zeropoint -1
|
|
TEST(QuantizeOpTest, UInt8Int8SameScale128Diff) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, -127, 128},
|
|
{TensorType_INT8, {1, 1, 2, 5}, -127, 128});
|
|
|
|
// Input will quantized to {128, 129, 130, 131, 132, 133, 134, 135, 136, 137}.
|
|
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
|
|
}
|
|
|
|
// Same as previous test, except more data to hit the neon path.
|
|
TEST(QuantizeOpTest, UInt8Int8SameScale128DiffNeonPath) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 4, 5}, -127, 128},
|
|
{TensorType_INT8, {1, 1, 4, 5}, -127, 128});
|
|
|
|
// Input will quantized to {128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
|
|
// 137, 136, 135, 134, 133, 132, 131, 130, 129, 128}.
|
|
m.SetInputAndQuantize<uint8_t>(
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
|
9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
|
|
}
|
|
|
|
// input scale 0.500000, output scale 0.500000, input zeropoint 0, output
|
|
// zeropoint -1
|
|
TEST(QuantizeOpTest, Uint8Int8SameScaleArbitraryDiff) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, 0, 127.5},
|
|
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {2,4,6,8,10,12,14,16,18,20}.
|
|
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
|
|
}
|
|
|
|
// Same as previous test, except more data to hit the neon path.
|
|
TEST(QuantizeOpTest, Uint8Int8SameScaleArbitraryDiffNeonPath) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 4, 5}, 0, 127.5},
|
|
{TensorType_INT8, {1, 1, 4, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to
|
|
// {2,4,6,8,10,12,14,16,18,20,20,18,16,14,12,10,8,6,4,2}.
|
|
m.SetInputAndQuantize<uint8_t>(
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
|
|
19, 17, 15, 13, 11, 9, 7, 5, 3, 1}));
|
|
}
|
|
|
|
// input scale 0.500000, output scale 1.000000, input zeropoint 0, output
|
|
// zeropoint -1
|
|
TEST(QuantizeOpTest, Uint8Int8LargerScale) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, 0, 127.5},
|
|
{TensorType_INT8, {1, 1, 2, 5}, -127, 128});
|
|
|
|
// Input will quantized to {2,4,6,8,10,12,14,16,18,20}.
|
|
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
|
|
}
|
|
|
|
// Same as previous test, except more data to hit the neon path.
|
|
TEST(QuantizeOpTest, Uint8Int8LargerScaleNeonPath) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 4, 5}, 0, 127.5},
|
|
{TensorType_INT8, {1, 1, 4, 5}, -127, 128});
|
|
|
|
// Input will quantized to
|
|
// {2,4,6,8,10,12,14,16,18,20,20,18,16,14,12,10,8,6,4,2}.
|
|
m.SetInputAndQuantize<uint8_t>(
|
|
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
|
9, 8, 7, 6, 5, 4, 3, 2, 1, 0}));
|
|
}
|
|
|
|
// input scale 1.000000, output scale 0.500000, input zeropoint 0, output
|
|
// zeropoint -1
|
|
TEST(QuantizeOpTest, Uint8Int8SmallerScale) {
|
|
QuantizeOpModel m({TensorType_UINT8, {1, 1, 2, 5}, 0, 255},
|
|
{TensorType_INT8, {1, 1, 2, 5}, -63.5, 64});
|
|
|
|
// Input will quantized to {1,2,3,4,5,6,7,8,9,10}.
|
|
m.SetInputAndQuantize<uint8_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({1, 3, 5, 7, 9, 11, 13, 15, 17, 19}));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|