STT-tensorflow/tensorflow/lite/kernels/l2norm_test.cc
A. Unique TensorFlower e48577945d Add guard to avoid acceleration of L2 Normalization with input rank != 4
PiperOrigin-RevId: 258114185
2019-07-15 01:49:54 -07:00

183 lines
6.6 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <gtest/gtest.h>
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/model.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class L2NormOpModel : public SingleOpModel {
public:
L2NormOpModel(const std::initializer_list<int> input_shape,
const TensorType tensor_type,
const ActivationFunctionType activation_type) {
TensorData data = TensorData{tensor_type};
if (tensor_type != TensorType_FLOAT32) {
data.min = -2.0;
data.max = 2.0;
data.scale = 2.0;
data.zero_point = 128;
}
input_ = AddInput(data);
if (tensor_type != TensorType_FLOAT32) {
data.min = -1.0;
data.max = 127.0 / 128.0;
}
output_ = AddOutput(data);
SetBuiltinOp(BuiltinOperator_L2_NORMALIZATION, BuiltinOptions_L2NormOptions,
CreateL2NormOptions(builder_, activation_type).Union());
BuildInterpreter({input_shape});
}
void SetInput(std::initializer_list<float> data) {
PopulateTensor(input_, data);
}
template <typename T>
std::vector<T> GetOutput() {
return ExtractVector<T>(output_);
}
template <typename T>
std::vector<float> GetDequantizedOutput() {
return Dequantize<T>(ExtractVector<T>(output_), GetScale(output_),
GetZeroPoint(output_));
}
int input() const { return input_; }
private:
int input_;
int output_;
};
TEST(L2NormOpTest, SimpleFloatTest) {
L2NormOpModel m({1, 1, 1, 6}, TensorType_FLOAT32,
ActivationFunctionType_NONE);
m.SetInput({-1.1, 0.6, 0.7, 1.2, -0.7, 0.1});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray({-0.55, 0.3, 0.35, 0.6, -0.35, 0.05}));
}
TEST(L2NormOpTest, SimpleFloatWithRankLessThanFourTest) {
L2NormOpModel m({1, 6}, TensorType_FLOAT32, ActivationFunctionType_NONE);
m.SetInput({-1.1, 0.6, 0.7, 1.2, -0.7, 0.1});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray({-0.55, 0.3, 0.35, 0.6, -0.35, 0.05}));
}
TEST(L2NormOpTest, MultipleBatchFloatTest) {
L2NormOpModel m({3, 1, 1, 6}, TensorType_FLOAT32,
ActivationFunctionType_NONE);
m.SetInput({
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 1
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 2
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 3
});
m.Invoke();
EXPECT_THAT(m.GetOutput<float>(),
ElementsAreArray({
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 1
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 2
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 3
}));
}
TEST(L2NormOpTest, SimpleUint8Test) {
L2NormOpModel m({1, 1, 1, 6}, TensorType_UINT8, ActivationFunctionType_NONE);
m.QuantizeAndPopulate<uint8_t>(m.input(), {-1.1, 0.6, 0.7, 1.2, -0.7, 0.1});
m.Invoke();
EXPECT_THAT(m.GetOutput<uint8_t>(),
ElementsAreArray({58, 166, 173, 205, 83, 134}));
EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(),
ElementsAreArray(
ArrayFloatNear({-0.55, 0.3, 0.35, 0.6, -0.35, 0.05}, 0.1)));
}
TEST(L2NormOpTest, SimpleInt8Test) {
L2NormOpModel m({1, 1, 1, 6}, TensorType_INT8, ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int8_t>(m.input(), {-1.1, 0.6, 0.7, 1.2, -0.7, 0.1});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(),
ElementsAreArray({-70, 38, 45, 77, -45, 6}));
EXPECT_THAT(m.GetDequantizedOutput<int8_t>(),
ElementsAreArray(
ArrayFloatNear({-0.55, 0.3, 0.35, 0.6, -0.35, 0.05}, 0.1)));
}
TEST(L2NormOpTest, MultipleBatchUint8Test) {
L2NormOpModel m({3, 1, 1, 6}, TensorType_UINT8, ActivationFunctionType_NONE);
m.QuantizeAndPopulate<uint8_t>(m.input(),
{
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 1
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 2
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 3
});
m.Invoke();
EXPECT_THAT(m.GetOutput<uint8_t>(),
ElementsAreArray({
58, 166, 173, 205, 83, 134, // batch 1
58, 166, 173, 205, 83, 134, // batch 2
58, 166, 173, 205, 83, 134, // batch 3
}));
EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(),
ElementsAreArray(ArrayFloatNear(
{
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 1
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 2
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 3
},
0.1)));
}
TEST(L2NormOpTest, MultipleBatchInt8Test) {
L2NormOpModel m({3, 1, 1, 6}, TensorType_INT8, ActivationFunctionType_NONE);
m.QuantizeAndPopulate<int8_t>(m.input(),
{
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 1
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 2
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 3
});
m.Invoke();
EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAreArray({
-70, 38, 45, 77, -45, 6, // batch 1
-70, 38, 45, 77, -45, 6, // batch 2
-70, 38, 45, 77, -45, 6, // batch 3
}));
EXPECT_THAT(m.GetDequantizedOutput<int8_t>(),
ElementsAreArray(ArrayFloatNear(
{
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 1
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 2
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 3
},
0.1)));
}
} // namespace
} // namespace tflite