183 lines
6.6 KiB
C++
183 lines
6.6 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/model.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
class L2NormOpModel : public SingleOpModel {
|
|
public:
|
|
L2NormOpModel(const std::initializer_list<int> input_shape,
|
|
const TensorType tensor_type,
|
|
const ActivationFunctionType activation_type) {
|
|
TensorData data = TensorData{tensor_type};
|
|
if (tensor_type != TensorType_FLOAT32) {
|
|
data.min = -2.0;
|
|
data.max = 2.0;
|
|
data.scale = 2.0;
|
|
data.zero_point = 128;
|
|
}
|
|
input_ = AddInput(data);
|
|
if (tensor_type != TensorType_FLOAT32) {
|
|
data.min = -1.0;
|
|
data.max = 127.0 / 128.0;
|
|
}
|
|
output_ = AddOutput(data);
|
|
SetBuiltinOp(BuiltinOperator_L2_NORMALIZATION, BuiltinOptions_L2NormOptions,
|
|
CreateL2NormOptions(builder_, activation_type).Union());
|
|
BuildInterpreter({input_shape});
|
|
}
|
|
|
|
void SetInput(std::initializer_list<float> data) {
|
|
PopulateTensor(input_, data);
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<T> GetOutput() {
|
|
return ExtractVector<T>(output_);
|
|
}
|
|
|
|
template <typename T>
|
|
std::vector<float> GetDequantizedOutput() {
|
|
return Dequantize<T>(ExtractVector<T>(output_), GetScale(output_),
|
|
GetZeroPoint(output_));
|
|
}
|
|
|
|
int input() const { return input_; }
|
|
|
|
private:
|
|
int input_;
|
|
int output_;
|
|
};
|
|
|
|
TEST(L2NormOpTest, SimpleFloatTest) {
|
|
L2NormOpModel m({1, 1, 1, 6}, TensorType_FLOAT32,
|
|
ActivationFunctionType_NONE);
|
|
m.SetInput({-1.1, 0.6, 0.7, 1.2, -0.7, 0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<float>(),
|
|
ElementsAreArray({-0.55, 0.3, 0.35, 0.6, -0.35, 0.05}));
|
|
}
|
|
|
|
TEST(L2NormOpTest, SimpleFloatWithRankLessThanFourTest) {
|
|
L2NormOpModel m({1, 6}, TensorType_FLOAT32, ActivationFunctionType_NONE);
|
|
m.SetInput({-1.1, 0.6, 0.7, 1.2, -0.7, 0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<float>(),
|
|
ElementsAreArray({-0.55, 0.3, 0.35, 0.6, -0.35, 0.05}));
|
|
}
|
|
|
|
TEST(L2NormOpTest, MultipleBatchFloatTest) {
|
|
L2NormOpModel m({3, 1, 1, 6}, TensorType_FLOAT32,
|
|
ActivationFunctionType_NONE);
|
|
m.SetInput({
|
|
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 1
|
|
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 2
|
|
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 3
|
|
});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<float>(),
|
|
ElementsAreArray({
|
|
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 1
|
|
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 2
|
|
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 3
|
|
}));
|
|
}
|
|
|
|
TEST(L2NormOpTest, SimpleUint8Test) {
|
|
L2NormOpModel m({1, 1, 1, 6}, TensorType_UINT8, ActivationFunctionType_NONE);
|
|
|
|
m.QuantizeAndPopulate<uint8_t>(m.input(), {-1.1, 0.6, 0.7, 1.2, -0.7, 0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({58, 166, 173, 205, 83, 134}));
|
|
EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(),
|
|
ElementsAreArray(
|
|
ArrayFloatNear({-0.55, 0.3, 0.35, 0.6, -0.35, 0.05}, 0.1)));
|
|
}
|
|
|
|
TEST(L2NormOpTest, SimpleInt8Test) {
|
|
L2NormOpModel m({1, 1, 1, 6}, TensorType_INT8, ActivationFunctionType_NONE);
|
|
|
|
m.QuantizeAndPopulate<int8_t>(m.input(), {-1.1, 0.6, 0.7, 1.2, -0.7, 0.1});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(),
|
|
ElementsAreArray({-70, 38, 45, 77, -45, 6}));
|
|
|
|
EXPECT_THAT(m.GetDequantizedOutput<int8_t>(),
|
|
ElementsAreArray(
|
|
ArrayFloatNear({-0.55, 0.3, 0.35, 0.6, -0.35, 0.05}, 0.1)));
|
|
}
|
|
|
|
TEST(L2NormOpTest, MultipleBatchUint8Test) {
|
|
L2NormOpModel m({3, 1, 1, 6}, TensorType_UINT8, ActivationFunctionType_NONE);
|
|
|
|
m.QuantizeAndPopulate<uint8_t>(m.input(),
|
|
{
|
|
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 1
|
|
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 2
|
|
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 3
|
|
});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<uint8_t>(),
|
|
ElementsAreArray({
|
|
58, 166, 173, 205, 83, 134, // batch 1
|
|
58, 166, 173, 205, 83, 134, // batch 2
|
|
58, 166, 173, 205, 83, 134, // batch 3
|
|
}));
|
|
EXPECT_THAT(m.GetDequantizedOutput<uint8_t>(),
|
|
ElementsAreArray(ArrayFloatNear(
|
|
{
|
|
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 1
|
|
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 2
|
|
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 3
|
|
},
|
|
0.1)));
|
|
}
|
|
|
|
TEST(L2NormOpTest, MultipleBatchInt8Test) {
|
|
L2NormOpModel m({3, 1, 1, 6}, TensorType_INT8, ActivationFunctionType_NONE);
|
|
|
|
m.QuantizeAndPopulate<int8_t>(m.input(),
|
|
{
|
|
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 1
|
|
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 2
|
|
-1.1, 0.6, 0.7, 1.2, -0.7, 0.1, // batch 3
|
|
});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.GetOutput<int8_t>(), ElementsAreArray({
|
|
-70, 38, 45, 77, -45, 6, // batch 1
|
|
-70, 38, 45, 77, -45, 6, // batch 2
|
|
-70, 38, 45, 77, -45, 6, // batch 3
|
|
}));
|
|
EXPECT_THAT(m.GetDequantizedOutput<int8_t>(),
|
|
ElementsAreArray(ArrayFloatNear(
|
|
{
|
|
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 1
|
|
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 2
|
|
-0.55, 0.3, 0.35, 0.6, -0.35, 0.05, // batch 3
|
|
},
|
|
0.1)));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|