115 lines
3.8 KiB
C++
115 lines
3.8 KiB
C++
|
|
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <string.h>
|
|
|
|
#include <vector>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/c_api_internal.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/op_macros.h"
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace expand_dims {
|
|
constexpr int kInput = 0;
|
|
constexpr int kAxis = 1;
|
|
|
|
namespace {
|
|
TfLiteStatus ExpandTensorDim(TfLiteContext* context, const TfLiteTensor& input,
|
|
int axis, TfLiteTensor* output) {
|
|
const TfLiteIntArray& input_dims = *input.dims;
|
|
if (axis < 0) {
|
|
axis = input_dims.size + 1 + axis;
|
|
}
|
|
TF_LITE_ENSURE(context, axis <= input_dims.size);
|
|
|
|
TfLiteIntArray* output_dims = TfLiteIntArrayCreate(input_dims.size + 1);
|
|
for (int i = 0; i < output_dims->size; ++i) {
|
|
if (i < axis) {
|
|
output_dims->data[i] = input_dims.data[i];
|
|
} else if (i == axis) {
|
|
output_dims->data[i] = 1;
|
|
} else {
|
|
output_dims->data[i] = input_dims.data[i - 1];
|
|
}
|
|
}
|
|
|
|
return context->ResizeTensor(context, output, output_dims);
|
|
}
|
|
|
|
TfLiteStatus GetAxisValueFromTensor(TfLiteContext* context,
|
|
const TfLiteTensor& axis, int* axis_value) {
|
|
TF_LITE_ENSURE_EQ(context, NumElements(&axis), 1);
|
|
switch (axis.type) {
|
|
case kTfLiteInt32:
|
|
*axis_value = *GetTensorData<int32_t>(&axis);
|
|
return kTfLiteOk;
|
|
case kTfLiteInt64:
|
|
*axis_value = *GetTensorData<int64_t>(&axis);
|
|
return kTfLiteOk;
|
|
default:
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
const TfLiteTensor* input = GetInput(context, node, kInput);
|
|
const TfLiteTensor* axis = GetInput(context, node, kAxis);
|
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
|
output->type = input->type;
|
|
if (IsConstantTensor(axis)) {
|
|
int axis_value;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetAxisValueFromTensor(context, *axis, &axis_value));
|
|
return ExpandTensorDim(context, *input, axis_value, output);
|
|
}
|
|
SetTensorToDynamic(output);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
// Just copy input to output.
|
|
const TfLiteTensor* input = GetInput(context, node, kInput);
|
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
|
const TfLiteTensor* axis = GetInput(context, node, kAxis);
|
|
if (IsDynamicTensor(output)) {
|
|
int axis_value;
|
|
TF_LITE_ENSURE_OK(context,
|
|
GetAxisValueFromTensor(context, *axis, &axis_value));
|
|
TF_LITE_ENSURE_OK(context,
|
|
ExpandTensorDim(context, *input, axis_value, output));
|
|
}
|
|
memcpy(output->data.raw, input->data.raw, input->bytes);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace expand_dims
|
|
TfLiteRegistration* Register_EXPAND_DIMS() {
|
|
static TfLiteRegistration r = {nullptr, nullptr, expand_dims::Prepare,
|
|
expand_dims::Eval};
|
|
return &r;
|
|
}
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|