193 lines
7.4 KiB
C++
193 lines
7.4 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include <complex>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/model.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
class CastOpModel : public SingleOpModel {
|
|
public:
|
|
CastOpModel(const TensorData& input, const TensorData& output) {
|
|
input_ = AddInput(input);
|
|
output_ = AddOutput(output);
|
|
SetBuiltinOp(BuiltinOperator_CAST, BuiltinOptions_CastOptions,
|
|
CreateCastOptions(builder_).Union());
|
|
BuildInterpreter({GetShape(input_)});
|
|
}
|
|
|
|
int input() const { return input_; }
|
|
int output() const { return output_; }
|
|
|
|
protected:
|
|
int input_;
|
|
int output_;
|
|
};
|
|
|
|
TEST(CastOpModel, CastInt32ToFloat) {
|
|
CastOpModel m({TensorType_INT32, {2, 3}}, {TensorType_FLOAT32, {2, 3}});
|
|
m.PopulateTensor<int32_t>(m.input(), {100, 200, 300, 400, 500, 600});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<float>(m.output()),
|
|
ElementsAreArray({100.f, 200.f, 300.f, 400.f, 500.f, 600.f}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastFloatToInt32) {
|
|
CastOpModel m({TensorType_FLOAT32, {3, 2}}, {TensorType_INT32, {3, 2}});
|
|
m.PopulateTensor<float>(m.input(), {100.f, 20.f, 3.f, 0.4f, 0.999f, 1.1f});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<int32_t>(m.output()),
|
|
ElementsAreArray({100, 20, 3, 0, 0, 1}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastInt64ToFloat) {
|
|
CastOpModel m({TensorType_INT64, {2, 3}}, {TensorType_FLOAT32, {2, 3}});
|
|
m.PopulateTensor<int64_t>(m.input(), {100, 200, 300, 400, 500, 600});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<float>(m.output()),
|
|
ElementsAreArray({100.f, 200.f, 300.f, 400.f, 500.f, 600.f}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastFloatToInt64) {
|
|
CastOpModel m({TensorType_FLOAT32, {3, 2}}, {TensorType_INT64, {3, 2}});
|
|
m.PopulateTensor<float>(m.input(), {100.f, 20.f, 3.f, 0.4f, 0.999f, 1.1f});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<int64_t>(m.output()),
|
|
ElementsAreArray({100, 20, 3, 0, 0, 1}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastFloatToBool) {
|
|
CastOpModel m({TensorType_FLOAT32, {3, 2}}, {TensorType_BOOL, {3, 2}});
|
|
m.PopulateTensor<float>(m.input(), {100.f, -1.0f, 0.f, 0.4f, 0.999f, 1.1f});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<bool>(m.output()),
|
|
ElementsAreArray({true, true, false, true, true, true}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastBoolToFloat) {
|
|
CastOpModel m({TensorType_BOOL, {3, 2}}, {TensorType_FLOAT32, {3, 2}});
|
|
m.PopulateTensor<bool>(m.input(), {true, true, false, true, false, true});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<float>(m.output()),
|
|
ElementsAreArray({1.f, 1.0f, 0.f, 1.0f, 0.0f, 1.0f}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastFloatToUInt8) {
|
|
CastOpModel m({TensorType_FLOAT32, {3, 2}}, {TensorType_UINT8, {3, 2}});
|
|
m.PopulateTensor<float>(m.input(), {100.f, 1.0f, 0.f, 0.4f, 1.999f, 1.1f});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<uint8_t>(m.output()),
|
|
ElementsAreArray({100, 1, 0, 0, 1, 1}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastUInt8ToFloat) {
|
|
CastOpModel m({TensorType_UINT8, {3, 2}}, {TensorType_FLOAT32, {3, 2}});
|
|
m.PopulateTensor<uint8_t>(m.input(), {123, 0, 1, 2, 3, 4});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<float>(m.output()),
|
|
ElementsAreArray({123.f, 0.f, 1.f, 2.f, 3.f, 4.f}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastInt32ToUInt8) {
|
|
CastOpModel m({TensorType_INT32, {3, 2}}, {TensorType_UINT8, {3, 2}});
|
|
m.PopulateTensor<int32_t>(m.input(), {100, 1, 200, 2, 255, 3});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<uint8_t>(m.output()),
|
|
ElementsAreArray({100, 1, 200, 2, 255, 3}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastUInt8ToInt32) {
|
|
CastOpModel m({TensorType_UINT8, {3, 2}}, {TensorType_INT32, {3, 2}});
|
|
m.PopulateTensor<uint8_t>(m.input(), {100, 1, 200, 2, 255, 3});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<int32_t>(m.output()),
|
|
ElementsAreArray({100, 1, 200, 2, 255, 3}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastComplex64ToFloat) {
|
|
CastOpModel m({TensorType_COMPLEX64, {2, 3}}, {TensorType_FLOAT32, {2, 3}});
|
|
m.PopulateTensor<std::complex<float>>(
|
|
m.input(),
|
|
{std::complex<float>(1.0f, 11.0f), std::complex<float>(2.0f, 12.0f),
|
|
std::complex<float>(3.0f, 13.0f), std::complex<float>(4.0f, 14.0f),
|
|
std::complex<float>(5.0f, 15.0f), std::complex<float>(6.0f, 16.0f)});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<float>(m.output()),
|
|
ElementsAreArray({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastFloatToComplex64) {
|
|
CastOpModel m({TensorType_FLOAT32, {2, 3}}, {TensorType_COMPLEX64, {2, 3}});
|
|
m.PopulateTensor<float>(m.input(), {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.ExtractVector<std::complex<float>>(m.output()),
|
|
ElementsAreArray(
|
|
{std::complex<float>(1.0f, 0.0f), std::complex<float>(2.0f, 0.0f),
|
|
std::complex<float>(3.0f, 0.0f), std::complex<float>(4.0f, 0.0f),
|
|
std::complex<float>(5.0f, 0.0f), std::complex<float>(6.0f, 0.0f)}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastComplex64ToInt) {
|
|
CastOpModel m({TensorType_COMPLEX64, {2, 3}}, {TensorType_INT32, {2, 3}});
|
|
m.PopulateTensor<std::complex<float>>(
|
|
m.input(),
|
|
{std::complex<float>(1.0f, 11.0f), std::complex<float>(2.0f, 12.0f),
|
|
std::complex<float>(3.0f, 13.0f), std::complex<float>(4.0f, 14.0f),
|
|
std::complex<float>(5.0f, 15.0f), std::complex<float>(6.0f, 16.0f)});
|
|
m.Invoke();
|
|
EXPECT_THAT(m.ExtractVector<int>(m.output()),
|
|
ElementsAreArray({1, 2, 3, 4, 5, 6}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastIntToComplex64) {
|
|
CastOpModel m({TensorType_INT32, {2, 3}}, {TensorType_COMPLEX64, {2, 3}});
|
|
m.PopulateTensor<int>(m.input(), {1, 2, 3, 4, 5, 6});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.ExtractVector<std::complex<float>>(m.output()),
|
|
ElementsAreArray(
|
|
{std::complex<float>(1.0f, 0.0f), std::complex<float>(2.0f, 0.0f),
|
|
std::complex<float>(3.0f, 0.0f), std::complex<float>(4.0f, 0.0f),
|
|
std::complex<float>(5.0f, 0.0f), std::complex<float>(6.0f, 0.0f)}));
|
|
}
|
|
|
|
TEST(CastOpModel, CastComplex64ToComplex64) {
|
|
CastOpModel m({TensorType_COMPLEX64, {2, 3}}, {TensorType_COMPLEX64, {2, 3}});
|
|
m.PopulateTensor<std::complex<float>>(
|
|
m.input(),
|
|
{std::complex<float>(1.0f, 11.0f), std::complex<float>(2.0f, 12.0f),
|
|
std::complex<float>(3.0f, 13.0f), std::complex<float>(4.0f, 14.0f),
|
|
std::complex<float>(5.0f, 15.0f), std::complex<float>(6.0f, 16.0f)});
|
|
m.Invoke();
|
|
EXPECT_THAT(
|
|
m.ExtractVector<std::complex<float>>(m.output()),
|
|
ElementsAreArray(
|
|
{std::complex<float>(1.0f, 11.0f), std::complex<float>(2.0f, 12.0f),
|
|
std::complex<float>(3.0f, 13.0f), std::complex<float>(4.0f, 14.0f),
|
|
std::complex<float>(5.0f, 15.0f),
|
|
std::complex<float>(6.0f, 16.0f)}));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|