264 lines
8.7 KiB
C++
264 lines
8.7 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/c_api_internal.h"
|
|
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/op_macros.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace arg_min_max {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kAxis = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
TfLiteStatus ResizeOutput(TfLiteContext* context, const TfLiteTensor* input,
|
|
const TfLiteTensor* axis, TfLiteTensor* output) {
|
|
int axis_value = *GetTensorData<int>(axis);
|
|
if (axis_value < 0) {
|
|
axis_value += NumDimensions(input);
|
|
}
|
|
|
|
// Copy the input dimensions to output except the axis dimension.
|
|
TfLiteIntArray* output_dims = TfLiteIntArrayCreate(NumDimensions(input) - 1);
|
|
int j = 0;
|
|
for (int i = 0; i < NumDimensions(input); ++i) {
|
|
if (i != axis_value) {
|
|
output_dims->data[j] = SizeOfDimension(input, i);
|
|
++j;
|
|
}
|
|
}
|
|
return context->ResizeTensor(context, output, output_dims);
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
const TfLiteTensor* axis = GetInput(context, node, kAxis);
|
|
// Make sure the axis is only 1 dimension.
|
|
TF_LITE_ENSURE_EQ(context, NumElements(axis), 1);
|
|
// Make sure the axis is only either int32 or int64.
|
|
TF_LITE_ENSURE(context,
|
|
axis->type == kTfLiteInt32 || axis->type == kTfLiteInt64);
|
|
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
auto* params = reinterpret_cast<TfLiteArgMaxParams*>(node->builtin_data);
|
|
switch (params->output_type) {
|
|
case kTfLiteInt32:
|
|
output->type = kTfLiteInt32;
|
|
break;
|
|
case kTfLiteInt64:
|
|
output->type = kTfLiteInt64;
|
|
break;
|
|
default:
|
|
context->ReportError(context, "Unknown index output data type: %d",
|
|
params->output_type);
|
|
return kTfLiteError;
|
|
}
|
|
|
|
// Check conditions for different types.
|
|
switch (input->type) {
|
|
case kTfLiteFloat32:
|
|
case kTfLiteUInt8:
|
|
case kTfLiteInt8:
|
|
case kTfLiteInt32:
|
|
break;
|
|
|
|
default:
|
|
context->ReportError(
|
|
context,
|
|
"Unknown input type: %d, only float32 and int types are supported",
|
|
input->type);
|
|
return kTfLiteError;
|
|
}
|
|
|
|
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
|
|
|
|
if (IsConstantTensor(axis)) {
|
|
TF_LITE_ENSURE_STATUS(ResizeOutput(context, input, axis, output));
|
|
} else {
|
|
SetTensorToDynamic(output);
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <typename T>
|
|
std::function<bool(T, T)> GetComparefunction(bool is_arg_max) {
|
|
if (is_arg_max) {
|
|
return std::greater<T>();
|
|
} else {
|
|
return std::less<T>();
|
|
}
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node, bool is_arg_max) {
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
const TfLiteTensor* axis = GetInput(context, node, kAxis);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
if (IsDynamicTensor(output)) {
|
|
TF_LITE_ENSURE_STATUS(ResizeOutput(context, input, axis, output));
|
|
}
|
|
|
|
#define TF_LITE_ARG_MIN_MAX(data_type, axis_type, output_type) \
|
|
optimized_ops::ArgMinMax( \
|
|
GetTensorShape(input), GetTensorData<data_type>(input), \
|
|
GetTensorData<axis_type>(axis), GetTensorShape(output), \
|
|
GetTensorData<output_type>(output), \
|
|
GetComparefunction<data_type>(is_arg_max))
|
|
if (axis->type == kTfLiteInt32) {
|
|
switch (output->type) {
|
|
case kTfLiteInt32: {
|
|
switch (input->type) {
|
|
case kTfLiteFloat32:
|
|
TF_LITE_ARG_MIN_MAX(float, int32_t, int32_t);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int32_t);
|
|
break;
|
|
case kTfLiteInt8:
|
|
TF_LITE_ARG_MIN_MAX(int8_t, int32_t, int32_t);
|
|
break;
|
|
case kTfLiteInt32:
|
|
TF_LITE_ARG_MIN_MAX(int32_t, int32_t, int32_t);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Only float32, uint8, int8 and int32 are "
|
|
"supported currently, got %s.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
} break;
|
|
case kTfLiteInt64: {
|
|
switch (input->type) {
|
|
case kTfLiteFloat32:
|
|
TF_LITE_ARG_MIN_MAX(float, int32_t, int64_t);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int64_t);
|
|
break;
|
|
case kTfLiteInt8:
|
|
TF_LITE_ARG_MIN_MAX(int8_t, int32_t, int64_t);
|
|
break;
|
|
case kTfLiteInt32:
|
|
TF_LITE_ARG_MIN_MAX(int32_t, int32_t, int64_t);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Only float32, uint8, int8 and int32 are "
|
|
"supported currently, got %s.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
} break;
|
|
default:
|
|
context->ReportError(
|
|
context, "Only int32 and int64 are supported currently, got %s.",
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
} else {
|
|
switch (output->type) {
|
|
case kTfLiteInt32: {
|
|
switch (input->type) {
|
|
case kTfLiteFloat32:
|
|
TF_LITE_ARG_MIN_MAX(float, int64_t, int32_t);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
TF_LITE_ARG_MIN_MAX(uint8_t, int64_t, int32_t);
|
|
break;
|
|
case kTfLiteInt8:
|
|
TF_LITE_ARG_MIN_MAX(int8_t, int64_t, int32_t);
|
|
break;
|
|
case kTfLiteInt32:
|
|
TF_LITE_ARG_MIN_MAX(int32_t, int64_t, int32_t);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Only float32, uint8, int8 and int32 are "
|
|
"supported currently, got %s.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
} break;
|
|
case kTfLiteInt64: {
|
|
switch (input->type) {
|
|
case kTfLiteFloat32:
|
|
TF_LITE_ARG_MIN_MAX(float, int64_t, int64_t);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
TF_LITE_ARG_MIN_MAX(uint8_t, int64_t, int64_t);
|
|
break;
|
|
case kTfLiteInt8:
|
|
TF_LITE_ARG_MIN_MAX(int8_t, int64_t, int64_t);
|
|
break;
|
|
case kTfLiteInt32:
|
|
TF_LITE_ARG_MIN_MAX(int32_t, int64_t, int64_t);
|
|
break;
|
|
default:
|
|
context->ReportError(context,
|
|
"Only float32, uint8, int8 and int32 are "
|
|
"supported currently, got %s.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
} break;
|
|
default:
|
|
context->ReportError(
|
|
context, "Only int32 and int64 are supported currently, got %s.",
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
#undef TF_LITE_ARG_MIN_MAX
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus ArgMinEval(TfLiteContext* context, TfLiteNode* node) {
|
|
return Eval(context, node, false);
|
|
}
|
|
|
|
TfLiteStatus ArgMaxEval(TfLiteContext* context, TfLiteNode* node) {
|
|
return Eval(context, node, true);
|
|
}
|
|
|
|
} // namespace arg_min_max
|
|
|
|
TfLiteRegistration* Register_ARG_MAX() {
|
|
static TfLiteRegistration r = {nullptr, nullptr, arg_min_max::Prepare,
|
|
arg_min_max::ArgMaxEval};
|
|
return &r;
|
|
}
|
|
|
|
TfLiteRegistration* Register_ARG_MIN() {
|
|
static TfLiteRegistration r = {nullptr, nullptr, arg_min_max::Prepare,
|
|
arg_min_max::ArgMinEval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|