STT-tensorflow/tensorflow/lite/kernels/add_n.cc
A. Unique TensorFlower df211323b8 Add built-in operator AddN. It only supports float and int_32 now.
PiperOrigin-RevId: 232365698
2019-02-04 14:24:47 -08:00

89 lines
3.3 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/c_api_internal.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace add_n {
constexpr int kInputTensor1 = 0;
constexpr int kOutputTensor = 0;
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
int num_inputs = NumInputs(node);
TF_LITE_ENSURE(context, num_inputs >= 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
output->type = input1->type;
// Check that all input tensors have the same shape and type.
for (int i = kInputTensor1 + 1; i < num_inputs; ++i) {
const TfLiteTensor* input = GetInput(context, node, i);
TF_LITE_ENSURE(context, HaveSameShapes(input1, input));
TF_LITE_ENSURE_EQ(context, input1->type, input->type);
}
// Use the first input node's dimension to be the dimension of the output
// node.
TfLiteIntArray* input1_dims = input1->dims;
TfLiteIntArray* output_dims = TfLiteIntArrayCopy(input1_dims);
return context->ResizeTensor(context, output, output_dims);
}
template <typename T>
void EvalAddN(TfLiteContext* context, TfLiteNode* node) {
// TODO(haoliang): Initialize all_inputs only once during init.
VectorOfTensors<T> all_inputs(*context, *node->inputs);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
int num_inputs = NumInputs(node);
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
reference_ops::AddN<T>(GetTensorShape(input1), num_inputs, all_inputs.data(),
GetTensorData<T>(output));
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
if (output->type == kTfLiteFloat32) {
EvalAddN<float>(context, node);
} else if (output->type == kTfLiteInt32) {
EvalAddN<int32_t>(context, node);
} else {
context->ReportError(context,
"AddN only supports FLOAT32|INT32 now, got %s.",
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace add_n
TfLiteRegistration* Register_ADD_N() {
static TfLiteRegistration r = {/*init*/ nullptr, /*free*/ nullptr,
add_n::Prepare, add_n::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite