STT-tensorflow/tensorflow/lite/experimental/c/c_api_test.cc
Jared Duke 04e311bf76 Use a genrule rather than symlink for c_api_types.h
Not all platforms can handle symlinks.

Note that this also removes the experimental C API from Makefile builds.
The Makefile targets may be deprecated in the near future.

Fixes #27282

PiperOrigin-RevId: 254492041
2019-06-21 16:44:25 -07:00

231 lines
8.0 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/experimental/c/c_api.h"
#include <array>
#include <fstream>
#include <vector>
#include <gtest/gtest.h>
#include "tensorflow/lite/testing/util.h"
namespace {
TEST(CAPI, Version) { EXPECT_STRNE("", TFL_Version()); }
TEST(CApiSimple, Smoke) {
TFL_Model* model = TFL_NewModelFromFile(
"tensorflow/lite/testdata/add.bin");
ASSERT_NE(model, nullptr);
TFL_InterpreterOptions* options = TFL_NewInterpreterOptions();
ASSERT_NE(options, nullptr);
TFL_InterpreterOptionsSetNumThreads(options, 2);
TFL_Interpreter* interpreter = TFL_NewInterpreter(model, options);
ASSERT_NE(interpreter, nullptr);
// The options/model can be deleted immediately after interpreter creation.
TFL_DeleteInterpreterOptions(options);
TFL_DeleteModel(model);
ASSERT_EQ(TFL_InterpreterAllocateTensors(interpreter), kTfLiteOk);
ASSERT_EQ(TFL_InterpreterGetInputTensorCount(interpreter), 1);
ASSERT_EQ(TFL_InterpreterGetOutputTensorCount(interpreter), 1);
std::array<int, 1> input_dims = {2};
ASSERT_EQ(TFL_InterpreterResizeInputTensor(interpreter, 0, input_dims.data(),
input_dims.size()),
kTfLiteOk);
ASSERT_EQ(TFL_InterpreterAllocateTensors(interpreter), kTfLiteOk);
TFL_Tensor* input_tensor = TFL_InterpreterGetInputTensor(interpreter, 0);
ASSERT_NE(input_tensor, nullptr);
EXPECT_EQ(TFL_TensorType(input_tensor), kTfLiteFloat32);
EXPECT_EQ(TFL_TensorNumDims(input_tensor), 1);
EXPECT_EQ(TFL_TensorDim(input_tensor, 0), 2);
EXPECT_EQ(TFL_TensorByteSize(input_tensor), sizeof(float) * 2);
EXPECT_NE(TFL_TensorData(input_tensor), nullptr);
EXPECT_STREQ(TFL_TensorName(input_tensor), "input");
TFL_QuantizationParams input_params =
TFL_TensorQuantizationParams(input_tensor);
EXPECT_EQ(input_params.scale, 0.f);
EXPECT_EQ(input_params.zero_point, 0);
std::array<float, 2> input = {1.f, 3.f};
ASSERT_EQ(TFL_TensorCopyFromBuffer(input_tensor, input.data(),
input.size() * sizeof(float)),
kTfLiteOk);
ASSERT_EQ(TFL_InterpreterInvoke(interpreter), kTfLiteOk);
const TFL_Tensor* output_tensor =
TFL_InterpreterGetOutputTensor(interpreter, 0);
ASSERT_NE(output_tensor, nullptr);
EXPECT_EQ(TFL_TensorType(output_tensor), kTfLiteFloat32);
EXPECT_EQ(TFL_TensorNumDims(output_tensor), 1);
EXPECT_EQ(TFL_TensorDim(output_tensor, 0), 2);
EXPECT_EQ(TFL_TensorByteSize(output_tensor), sizeof(float) * 2);
EXPECT_NE(TFL_TensorData(output_tensor), nullptr);
EXPECT_STREQ(TFL_TensorName(output_tensor), "output");
TFL_QuantizationParams output_params =
TFL_TensorQuantizationParams(output_tensor);
EXPECT_EQ(output_params.scale, 0.f);
EXPECT_EQ(output_params.zero_point, 0);
std::array<float, 2> output;
ASSERT_EQ(TFL_TensorCopyToBuffer(output_tensor, output.data(),
output.size() * sizeof(float)),
kTfLiteOk);
EXPECT_EQ(output[0], 3.f);
EXPECT_EQ(output[1], 9.f);
TFL_DeleteInterpreter(interpreter);
}
TEST(CApiSimple, QuantizationParams) {
TFL_Model* model = TFL_NewModelFromFile(
"tensorflow/lite/testdata/add_quantized.bin");
ASSERT_NE(model, nullptr);
TFL_Interpreter* interpreter = TFL_NewInterpreter(model, nullptr);
ASSERT_NE(interpreter, nullptr);
TFL_DeleteModel(model);
const std::array<int, 1> input_dims = {2};
ASSERT_EQ(TFL_InterpreterResizeInputTensor(interpreter, 0, input_dims.data(),
input_dims.size()),
kTfLiteOk);
ASSERT_EQ(TFL_InterpreterAllocateTensors(interpreter), kTfLiteOk);
TFL_Tensor* input_tensor = TFL_InterpreterGetInputTensor(interpreter, 0);
ASSERT_NE(input_tensor, nullptr);
EXPECT_EQ(TFL_TensorType(input_tensor), kTfLiteUInt8);
EXPECT_EQ(TFL_TensorNumDims(input_tensor), 1);
EXPECT_EQ(TFL_TensorDim(input_tensor, 0), 2);
TFL_QuantizationParams input_params =
TFL_TensorQuantizationParams(input_tensor);
EXPECT_EQ(input_params.scale, 0.003922f);
EXPECT_EQ(input_params.zero_point, 0);
const std::array<uint8_t, 2> input = {1, 3};
ASSERT_EQ(TFL_TensorCopyFromBuffer(input_tensor, input.data(),
input.size() * sizeof(uint8_t)),
kTfLiteOk);
ASSERT_EQ(TFL_InterpreterInvoke(interpreter), kTfLiteOk);
const TFL_Tensor* output_tensor =
TFL_InterpreterGetOutputTensor(interpreter, 0);
ASSERT_NE(output_tensor, nullptr);
TFL_QuantizationParams output_params =
TFL_TensorQuantizationParams(output_tensor);
EXPECT_EQ(output_params.scale, 0.003922f);
EXPECT_EQ(output_params.zero_point, 0);
std::array<uint8_t, 2> output;
ASSERT_EQ(TFL_TensorCopyToBuffer(output_tensor, output.data(),
output.size() * sizeof(uint8_t)),
kTfLiteOk);
EXPECT_EQ(output[0], 3);
EXPECT_EQ(output[1], 9);
const float dequantizedOutput0 =
output_params.scale * (output[0] - output_params.zero_point);
const float dequantizedOutput1 =
output_params.scale * (output[1] - output_params.zero_point);
EXPECT_EQ(dequantizedOutput0, 0.011766f);
EXPECT_EQ(dequantizedOutput1, 0.035298f);
TFL_DeleteInterpreter(interpreter);
}
TEST(CApiSimple, ErrorReporter) {
TFL_Model* model = TFL_NewModelFromFile(
"tensorflow/lite/testdata/add.bin");
TFL_InterpreterOptions* options = TFL_NewInterpreterOptions();
// Install a custom error reporter into the interpreter by way of options.
tflite::TestErrorReporter reporter;
TFL_InterpreterOptionsSetErrorReporter(
options,
[](void* user_data, const char* format, va_list args) {
reinterpret_cast<tflite::TestErrorReporter*>(user_data)->Report(format,
args);
},
&reporter);
TFL_Interpreter* interpreter = TFL_NewInterpreter(model, options);
// The options/model can be deleted immediately after interpreter creation.
TFL_DeleteInterpreterOptions(options);
TFL_DeleteModel(model);
// Invoke the interpreter before tensor allocation.
EXPECT_EQ(TFL_InterpreterInvoke(interpreter), kTfLiteError);
// The error should propagate to the custom error reporter.
EXPECT_EQ(reporter.error_messages(),
"Invoke called on model that is not ready.");
EXPECT_EQ(reporter.num_calls(), 1);
TFL_DeleteInterpreter(interpreter);
}
TEST(CApiSimple, ValidModel) {
std::ifstream model_file("tensorflow/lite/testdata/add.bin");
model_file.seekg(0, std::ios_base::end);
std::vector<char> model_buffer(model_file.tellg());
model_file.seekg(0, std::ios_base::beg);
model_file.read(model_buffer.data(), model_buffer.size());
TFL_Model* model = TFL_NewModel(model_buffer.data(), model_buffer.size());
ASSERT_NE(model, nullptr);
TFL_DeleteModel(model);
}
TEST(CApiSimple, ValidModelFromFile) {
TFL_Model* model =
TFL_NewModelFromFile("tensorflow/lite/testdata/add.bin");
ASSERT_NE(model, nullptr);
TFL_DeleteModel(model);
}
TEST(CApiSimple, InvalidModel) {
std::vector<char> invalid_model(20, 'c');
TFL_Model* model = TFL_NewModel(invalid_model.data(), invalid_model.size());
ASSERT_EQ(model, nullptr);
}
TEST(CApiSimple, InvalidModelFromFile) {
TFL_Model* model = TFL_NewModelFromFile("invalid/path/foo.tflite");
ASSERT_EQ(model, nullptr);
}
} // namespace
int main(int argc, char** argv) {
::tflite::LogToStderr();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}