STT-tensorflow/tensorflow/stream_executor/cuda/cuda_blas.h
TensorFlower Gardener 7e5dc369b8 Merge pull request #44175 from benbarsdell:cublaslt-large-batch-workaround-proper
PiperOrigin-RevId: 338087096
Change-Id: Iad9dd0c7f6a6d38043958eea83b0c1b1ad93b287
2020-10-20 10:42:41 -07:00

182 lines
7.7 KiB
C++

/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// CUDA-specific support for BLAS functionality -- this wraps the cuBLAS library
// capabilities, and is only included into CUDA implementation code -- it will
// not introduce cuda headers into other code.
#ifndef TENSORFLOW_STREAM_EXECUTOR_CUDA_CUDA_BLAS_H_
#define TENSORFLOW_STREAM_EXECUTOR_CUDA_CUDA_BLAS_H_
#include "absl/synchronization/mutex.h"
#include "third_party/gpus/cuda/include/cublasLt.h"
#include "third_party/gpus/cuda/include/cublas_v2.h"
#include "third_party/gpus/cuda/include/cuda.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/stream_executor/blas.h"
#include "tensorflow/stream_executor/host_or_device_scalar.h"
#include "tensorflow/stream_executor/platform/port.h"
#include "tensorflow/stream_executor/plugin_registry.h"
typedef struct cublasContext *cublasHandle_t;
namespace stream_executor {
class Stream;
namespace gpu {
// Opaque and unique identifier for the cuBLAS plugin.
extern const PluginId kCuBlasPlugin;
class GpuExecutor;
// BLAS plugin for CUDA platform via cuBLAS library.
//
// This satisfies the platform-agnostic BlasSupport interface.
//
// Note that the cuBLAS handle that this encapsulates is implicitly tied to the
// context (and, as a result, the device) that the parent GpuExecutor is tied
// to. This simply happens as an artifact of creating the cuBLAS handle when a
// CUDA context is active.
//
// Thread-safe post-initialization.
class CUDABlas : public blas::BlasSupport {
public:
explicit CUDABlas(GpuExecutor *parent);
// Allocates a cuBLAS handle.
bool Init();
// Releases the cuBLAS handle, if present.
~CUDABlas() override;
TENSORFLOW_STREAM_EXECUTOR_GPU_BLAS_SUPPORT_OVERRIDES
private:
// Tells cuBLAS to enqueue the BLAS operation onto a particular Stream.
//
// cuBLAS is stateful, and only be associated with one stream (in order to
// enqueue dispatch) at a given time. As a result, this generally must be
// invoked before calling into cuBLAS.
bool SetStream(Stream *stream) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_);
// Returns the underlying CUDA stream.
cudaStream_t CUDAStream(Stream *stream);
// A helper function that calls the real cuBLAS function together with error
// handling.
//
// cublas_func: cuBLAS function pointer.
// cublas_name: cuBLAS function name.
// stream: Stream to enqueue the BLAS operation onto.
// pointer_mode_host: Indicate if the pointer to a scalar value is from host
// (true) or device (false).
// err_on_failure: Whether to print an error if the cublas function fails.
// args: Arguments of cuBLAS function.
template <typename FuncT, typename... Args>
bool DoBlasInternalImpl(FuncT cublas_func, Stream *stream,
bool pointer_mode_host, bool err_on_failure,
cublasMath_t math_type, Args... args);
// Convenience functions that call DoBlasInternalImpl with err_on_failure=true
// and math_type=CUBLAS_DEFAULT_MATH.
template <typename FuncT, typename... Args>
bool DoBlasInternal(FuncT cublas_func, Stream *stream, bool pointer_mode_host,
Args... args) {
return DoBlasInternalImpl(cublas_func, stream, pointer_mode_host,
/*err_on_failure=*/true, CUBLAS_DEFAULT_MATH,
args...);
}
// A helper function to implement DoBlasGemmBatched interfaces for generic
// types.
template <typename T, typename Scalar, typename FuncT>
port::Status DoBlasGemmBatchedInternal(
FuncT cublas_func, Stream *stream, blas::Transpose transa,
blas::Transpose transb, uint64 m, uint64 n, uint64 k, Scalar alpha,
const port::ArraySlice<DeviceMemory<T> *> &a_array, int lda,
const port::ArraySlice<DeviceMemory<T> *> &b_array, int ldb, Scalar beta,
const port::ArraySlice<DeviceMemory<T> *> &c_array, int ldc,
int batch_count, ScratchAllocator *scratch_allocator);
// Helper function for implementing DoBlasGemmWithAlgorithm.
template <typename InT, typename OutT, typename CompT>
bool DoBlasGemmWithAlgorithmImpl(
Stream *stream, blas::Transpose transa, blas::Transpose transb, uint64 m,
uint64 n, uint64 k, const HostOrDeviceScalar<CompT> &alpha,
const DeviceMemory<InT> &a, int lda, const DeviceMemory<InT> &b, int ldb,
const HostOrDeviceScalar<CompT> &beta, DeviceMemory<OutT> *c, int ldc,
blas::ComputationType computation_type, blas::AlgorithmType algorithm,
blas::ProfileResult *output_profile_result);
// Helper function for implementing DoBlasGemmWithProfiling.
template <typename T, typename ParamType>
bool DoBlasGemmWithProfilingImpl(
Stream *stream, blas::Transpose transa, blas::Transpose transb, uint64 m,
uint64 n, uint64 k, const ParamType &alpha, const DeviceMemory<T> &a,
int lda, const DeviceMemory<T> &b, int ldb, const ParamType &beta,
DeviceMemory<T> *c, int ldc, blas::ProfileResult *output_profile_result);
// Helper function for implementing DoBlasGemvWithProfiling.
template <typename T>
bool DoBlasGemvWithProfilingImpl(Stream *stream, blas::Transpose trans,
uint64 m, uint64 n, const T &alpha,
const DeviceMemory<T> &a, int lda,
const DeviceMemory<T> &x, int incx,
const T &beta, DeviceMemory<T> *y, int incy,
blas::ProfileResult *output_profile_result);
// Helper function for implementing DoBlasLtMatmul.
bool DoBlasLtMatmulInternal(Stream *stream, bool err_on_failure,
const blas::IBlasLtMatmulPlan *plan,
const HostOrDeviceScalar<void> &alpha,
DeviceMemoryBase a, DeviceMemoryBase b,
const HostOrDeviceScalar<void> &beta,
DeviceMemoryBase c, DeviceMemoryBase d,
ScratchAllocator *scratch_allocator,
const blas::IBlasLtMatmulAlgorithm *algorithm,
DeviceMemoryBase bias);
// Helper function for implementing GetBlasLtMatmulAlgorithms.
port::StatusOr<std::vector<std::unique_ptr<blas::IBlasLtMatmulAlgorithm>>>
GetBlasLtMatmulAlgorithmsInternal(const blas::IBlasLtMatmulPlan *plan,
size_t max_workspace_size,
int max_algorithm_count,
bool for_remainder_batch = false);
// Guards the cuBLAS handle for this device.
absl::Mutex mu_;
// GpuExecutor which instantiated this CUDABlas.
// Immutable post-initialization.
GpuExecutor *parent_;
// cuBLAS library handle on the device.
cublasHandle_t blas_ TF_GUARDED_BY(mu_);
#if CUDA_VERSION >= 11000
// cuBLASLt library handle on the device.
cublasLtHandle_t blasLt_ GUARDED_BY(mu_);
#endif
SE_DISALLOW_COPY_AND_ASSIGN(CUDABlas);
};
} // namespace gpu
} // namespace stream_executor
#endif // TENSORFLOW_STREAM_EXECUTOR_CUDA_CUDA_BLAS_H_