Explicit constructor call is no less clear and match what we export via the public API. The functions will be removed once all the internal users are migrated. PiperOrigin-RevId: 259620054
209 lines
7.0 KiB
Python
209 lines
7.0 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""The Uniform distribution class."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import math
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import tensor_shape
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import check_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import random_ops
|
|
from tensorflow.python.ops.distributions import distribution
|
|
from tensorflow.python.util import deprecation
|
|
from tensorflow.python.util.tf_export import tf_export
|
|
|
|
|
|
@tf_export(v1=["distributions.Uniform"])
|
|
class Uniform(distribution.Distribution):
|
|
"""Uniform distribution with `low` and `high` parameters.
|
|
|
|
#### Mathematical Details
|
|
|
|
The probability density function (pdf) is,
|
|
|
|
```none
|
|
pdf(x; a, b) = I[a <= x < b] / Z
|
|
Z = b - a
|
|
```
|
|
|
|
where
|
|
|
|
- `low = a`,
|
|
- `high = b`,
|
|
- `Z` is the normalizing constant, and
|
|
- `I[predicate]` is the [indicator function](
|
|
https://en.wikipedia.org/wiki/Indicator_function) for `predicate`.
|
|
|
|
The parameters `low` and `high` must be shaped in a way that supports
|
|
broadcasting (e.g., `high - low` is a valid operation).
|
|
|
|
#### Examples
|
|
|
|
```python
|
|
# Without broadcasting:
|
|
u1 = Uniform(low=3.0, high=4.0) # a single uniform distribution [3, 4]
|
|
u2 = Uniform(low=[1.0, 2.0],
|
|
high=[3.0, 4.0]) # 2 distributions [1, 3], [2, 4]
|
|
u3 = Uniform(low=[[1.0, 2.0],
|
|
[3.0, 4.0]],
|
|
high=[[1.5, 2.5],
|
|
[3.5, 4.5]]) # 4 distributions
|
|
```
|
|
|
|
```python
|
|
# With broadcasting:
|
|
u1 = Uniform(low=3.0, high=[5.0, 6.0, 7.0]) # 3 distributions
|
|
```
|
|
|
|
"""
|
|
|
|
@deprecation.deprecated(
|
|
"2019-01-01",
|
|
"The TensorFlow Distributions library has moved to "
|
|
"TensorFlow Probability "
|
|
"(https://github.com/tensorflow/probability). You "
|
|
"should update all references to use `tfp.distributions` "
|
|
"instead of `tf.distributions`.",
|
|
warn_once=True)
|
|
def __init__(self,
|
|
low=0.,
|
|
high=1.,
|
|
validate_args=False,
|
|
allow_nan_stats=True,
|
|
name="Uniform"):
|
|
"""Initialize a batch of Uniform distributions.
|
|
|
|
Args:
|
|
low: Floating point tensor, lower boundary of the output interval. Must
|
|
have `low < high`.
|
|
high: Floating point tensor, upper boundary of the output interval. Must
|
|
have `low < high`.
|
|
validate_args: Python `bool`, default `False`. When `True` distribution
|
|
parameters are checked for validity despite possibly degrading runtime
|
|
performance. When `False` invalid inputs may silently render incorrect
|
|
outputs.
|
|
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
|
|
(e.g., mean, mode, variance) use the value "`NaN`" to indicate the
|
|
result is undefined. When `False`, an exception is raised if one or
|
|
more of the statistic's batch members are undefined.
|
|
name: Python `str` name prefixed to Ops created by this class.
|
|
|
|
Raises:
|
|
InvalidArgumentError: if `low >= high` and `validate_args=False`.
|
|
"""
|
|
parameters = dict(locals())
|
|
with ops.name_scope(name, values=[low, high]) as name:
|
|
with ops.control_dependencies([
|
|
check_ops.assert_less(
|
|
low, high, message="uniform not defined when low >= high.")
|
|
] if validate_args else []):
|
|
self._low = array_ops.identity(low, name="low")
|
|
self._high = array_ops.identity(high, name="high")
|
|
check_ops.assert_same_float_dtype([self._low, self._high])
|
|
super(Uniform, self).__init__(
|
|
dtype=self._low.dtype,
|
|
reparameterization_type=distribution.FULLY_REPARAMETERIZED,
|
|
validate_args=validate_args,
|
|
allow_nan_stats=allow_nan_stats,
|
|
parameters=parameters,
|
|
graph_parents=[self._low,
|
|
self._high],
|
|
name=name)
|
|
|
|
@staticmethod
|
|
def _param_shapes(sample_shape):
|
|
return dict(
|
|
zip(("low", "high"),
|
|
([ops.convert_to_tensor(sample_shape, dtype=dtypes.int32)] * 2)))
|
|
|
|
@property
|
|
def low(self):
|
|
"""Lower boundary of the output interval."""
|
|
return self._low
|
|
|
|
@property
|
|
def high(self):
|
|
"""Upper boundary of the output interval."""
|
|
return self._high
|
|
|
|
def range(self, name="range"):
|
|
"""`high - low`."""
|
|
with self._name_scope(name):
|
|
return self.high - self.low
|
|
|
|
def _batch_shape_tensor(self):
|
|
return array_ops.broadcast_dynamic_shape(
|
|
array_ops.shape(self.low),
|
|
array_ops.shape(self.high))
|
|
|
|
def _batch_shape(self):
|
|
return array_ops.broadcast_static_shape(
|
|
self.low.get_shape(),
|
|
self.high.get_shape())
|
|
|
|
def _event_shape_tensor(self):
|
|
return constant_op.constant([], dtype=dtypes.int32)
|
|
|
|
def _event_shape(self):
|
|
return tensor_shape.TensorShape([])
|
|
|
|
def _sample_n(self, n, seed=None):
|
|
shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
|
|
samples = random_ops.random_uniform(shape=shape,
|
|
dtype=self.dtype,
|
|
seed=seed)
|
|
return self.low + self.range() * samples
|
|
|
|
def _prob(self, x):
|
|
broadcasted_x = x * array_ops.ones(
|
|
self.batch_shape_tensor(), dtype=x.dtype)
|
|
return array_ops.where_v2(
|
|
math_ops.is_nan(broadcasted_x), broadcasted_x,
|
|
array_ops.where_v2(
|
|
math_ops.logical_or(broadcasted_x < self.low,
|
|
broadcasted_x >= self.high),
|
|
array_ops.zeros_like(broadcasted_x),
|
|
array_ops.ones_like(broadcasted_x) / self.range()))
|
|
|
|
def _cdf(self, x):
|
|
broadcast_shape = array_ops.broadcast_dynamic_shape(
|
|
array_ops.shape(x), self.batch_shape_tensor())
|
|
zeros = array_ops.zeros(broadcast_shape, dtype=self.dtype)
|
|
ones = array_ops.ones(broadcast_shape, dtype=self.dtype)
|
|
broadcasted_x = x * ones
|
|
result_if_not_big = array_ops.where_v2(
|
|
x < self.low, zeros, (broadcasted_x - self.low) / self.range())
|
|
return array_ops.where_v2(x >= self.high, ones, result_if_not_big)
|
|
|
|
def _entropy(self):
|
|
return math_ops.log(self.range())
|
|
|
|
def _mean(self):
|
|
return (self.low + self.high) / 2.
|
|
|
|
def _variance(self):
|
|
return math_ops.square(self.range()) / 12.
|
|
|
|
def _stddev(self):
|
|
return self.range() / math.sqrt(12.)
|