Sergei Lebedev bca5e7385f Inlined tensor_shape.{scalar,vector,matrix}
Explicit constructor call is no less clear and match what we export via
the public API.

The functions will be removed once all the internal users are migrated.

PiperOrigin-RevId: 259620054
2019-07-23 15:33:44 -07:00

209 lines
7.0 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The Uniform distribution class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops.distributions import distribution
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import tf_export
@tf_export(v1=["distributions.Uniform"])
class Uniform(distribution.Distribution):
"""Uniform distribution with `low` and `high` parameters.
#### Mathematical Details
The probability density function (pdf) is,
```none
pdf(x; a, b) = I[a <= x < b] / Z
Z = b - a
```
where
- `low = a`,
- `high = b`,
- `Z` is the normalizing constant, and
- `I[predicate]` is the [indicator function](
https://en.wikipedia.org/wiki/Indicator_function) for `predicate`.
The parameters `low` and `high` must be shaped in a way that supports
broadcasting (e.g., `high - low` is a valid operation).
#### Examples
```python
# Without broadcasting:
u1 = Uniform(low=3.0, high=4.0) # a single uniform distribution [3, 4]
u2 = Uniform(low=[1.0, 2.0],
high=[3.0, 4.0]) # 2 distributions [1, 3], [2, 4]
u3 = Uniform(low=[[1.0, 2.0],
[3.0, 4.0]],
high=[[1.5, 2.5],
[3.5, 4.5]]) # 4 distributions
```
```python
# With broadcasting:
u1 = Uniform(low=3.0, high=[5.0, 6.0, 7.0]) # 3 distributions
```
"""
@deprecation.deprecated(
"2019-01-01",
"The TensorFlow Distributions library has moved to "
"TensorFlow Probability "
"(https://github.com/tensorflow/probability). You "
"should update all references to use `tfp.distributions` "
"instead of `tf.distributions`.",
warn_once=True)
def __init__(self,
low=0.,
high=1.,
validate_args=False,
allow_nan_stats=True,
name="Uniform"):
"""Initialize a batch of Uniform distributions.
Args:
low: Floating point tensor, lower boundary of the output interval. Must
have `low < high`.
high: Floating point tensor, upper boundary of the output interval. Must
have `low < high`.
validate_args: Python `bool`, default `False`. When `True` distribution
parameters are checked for validity despite possibly degrading runtime
performance. When `False` invalid inputs may silently render incorrect
outputs.
allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
(e.g., mean, mode, variance) use the value "`NaN`" to indicate the
result is undefined. When `False`, an exception is raised if one or
more of the statistic's batch members are undefined.
name: Python `str` name prefixed to Ops created by this class.
Raises:
InvalidArgumentError: if `low >= high` and `validate_args=False`.
"""
parameters = dict(locals())
with ops.name_scope(name, values=[low, high]) as name:
with ops.control_dependencies([
check_ops.assert_less(
low, high, message="uniform not defined when low >= high.")
] if validate_args else []):
self._low = array_ops.identity(low, name="low")
self._high = array_ops.identity(high, name="high")
check_ops.assert_same_float_dtype([self._low, self._high])
super(Uniform, self).__init__(
dtype=self._low.dtype,
reparameterization_type=distribution.FULLY_REPARAMETERIZED,
validate_args=validate_args,
allow_nan_stats=allow_nan_stats,
parameters=parameters,
graph_parents=[self._low,
self._high],
name=name)
@staticmethod
def _param_shapes(sample_shape):
return dict(
zip(("low", "high"),
([ops.convert_to_tensor(sample_shape, dtype=dtypes.int32)] * 2)))
@property
def low(self):
"""Lower boundary of the output interval."""
return self._low
@property
def high(self):
"""Upper boundary of the output interval."""
return self._high
def range(self, name="range"):
"""`high - low`."""
with self._name_scope(name):
return self.high - self.low
def _batch_shape_tensor(self):
return array_ops.broadcast_dynamic_shape(
array_ops.shape(self.low),
array_ops.shape(self.high))
def _batch_shape(self):
return array_ops.broadcast_static_shape(
self.low.get_shape(),
self.high.get_shape())
def _event_shape_tensor(self):
return constant_op.constant([], dtype=dtypes.int32)
def _event_shape(self):
return tensor_shape.TensorShape([])
def _sample_n(self, n, seed=None):
shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
samples = random_ops.random_uniform(shape=shape,
dtype=self.dtype,
seed=seed)
return self.low + self.range() * samples
def _prob(self, x):
broadcasted_x = x * array_ops.ones(
self.batch_shape_tensor(), dtype=x.dtype)
return array_ops.where_v2(
math_ops.is_nan(broadcasted_x), broadcasted_x,
array_ops.where_v2(
math_ops.logical_or(broadcasted_x < self.low,
broadcasted_x >= self.high),
array_ops.zeros_like(broadcasted_x),
array_ops.ones_like(broadcasted_x) / self.range()))
def _cdf(self, x):
broadcast_shape = array_ops.broadcast_dynamic_shape(
array_ops.shape(x), self.batch_shape_tensor())
zeros = array_ops.zeros(broadcast_shape, dtype=self.dtype)
ones = array_ops.ones(broadcast_shape, dtype=self.dtype)
broadcasted_x = x * ones
result_if_not_big = array_ops.where_v2(
x < self.low, zeros, (broadcasted_x - self.low) / self.range())
return array_ops.where_v2(x >= self.high, ones, result_if_not_big)
def _entropy(self):
return math_ops.log(self.range())
def _mean(self):
return (self.low + self.high) / 2.
def _variance(self):
return math_ops.square(self.range()) / 12.
def _stddev(self):
return self.range() / math.sqrt(12.)