Adding an HLO pass that expands the kLogistic HLO into a desired sequence of different HLOs. Currently two different strategies are added. 1) A lowering through an expansion using TAHN (0.5 + 0.5 * tanh(0.5 * x)) 2) A lowering through an expansion using EXP (1.0 / (1.0 + exp(-x))) PiperOrigin-RevId: 318208462 Change-Id: Ibcfba8e95f76c85cdbffc42566f5cec5e663c72b
89 lines
3.3 KiB
C++
89 lines
3.3 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/compiler/xla/service/logistic_expander.h"
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "absl/types/span.h"
|
|
#include "tensorflow/compiler/xla/literal.h"
|
|
#include "tensorflow/compiler/xla/literal_util.h"
|
|
#include "tensorflow/compiler/xla/service/dfs_hlo_visitor_with_default.h"
|
|
#include "tensorflow/compiler/xla/service/hlo_computation.h"
|
|
#include "tensorflow/compiler/xla/service/hlo_creation_utils.h"
|
|
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
|
|
#include "tensorflow/compiler/xla/service/hlo_opcode.h"
|
|
#include "tensorflow/compiler/xla/shape_util.h"
|
|
#include "tensorflow/compiler/xla/status_macros.h"
|
|
#include "tensorflow/compiler/xla/types.h"
|
|
#include "tensorflow/compiler/xla/util.h"
|
|
#include "tensorflow/compiler/xla/xla_data.pb.h"
|
|
#include "tensorflow/core/lib/core/errors.h"
|
|
#include "tensorflow/core/lib/core/status.h"
|
|
#include "tensorflow/core/platform/logging.h"
|
|
#include "tensorflow/core/platform/types.h"
|
|
|
|
namespace xla {
|
|
|
|
namespace {
|
|
|
|
HloInstruction* ExpandLogisticWithTanh(HloInstruction* logistic) {
|
|
HloInstruction* operand = logistic->mutable_operand(0);
|
|
const Shape operand_shape = operand->shape();
|
|
HloInstruction* half_constant = MakeScalarLike(operand, 0.5f);
|
|
HloInstruction* tanh_instr =
|
|
MakeUnaryHlo(HloOpcode::kTanh,
|
|
MakeBinaryHlo(HloOpcode::kMultiply, half_constant, operand)
|
|
.ValueOrDie())
|
|
.ValueOrDie();
|
|
return MakeBinaryHlo(
|
|
HloOpcode::kAdd, half_constant,
|
|
MakeBinaryHlo(HloOpcode::kMultiply, half_constant, tanh_instr)
|
|
.ValueOrDie())
|
|
.ValueOrDie();
|
|
}
|
|
|
|
HloInstruction* ExpandLogisticWithExp(HloInstruction* logistic) {
|
|
HloInstruction* operand = logistic->mutable_operand(0);
|
|
const Shape operand_shape = operand->shape();
|
|
// Computing 1.0 / (1.0 - exp(-x))
|
|
HloInstruction* one_constant = MakeScalarLike(operand, 1.0f);
|
|
HloInstruction* exp_instr =
|
|
MakeUnaryHlo(HloOpcode::kExp,
|
|
MakeUnaryHlo(HloOpcode::kNegate, operand).ValueOrDie())
|
|
.ValueOrDie();
|
|
HloInstruction* denominator =
|
|
MakeBinaryHlo(HloOpcode::kAdd, one_constant, exp_instr).ValueOrDie();
|
|
return MakeBinaryHlo(HloOpcode::kDivide, one_constant, denominator)
|
|
.ValueOrDie();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool LogisticExpander::InstructionMatchesPattern(HloInstruction* instruction) {
|
|
return instruction->opcode() == HloOpcode::kLogistic;
|
|
}
|
|
|
|
StatusOr<HloInstruction*> LogisticExpander::ExpandInstruction(
|
|
HloInstruction* instruction) {
|
|
switch (expansion_type_) {
|
|
case LogisticExpansionType::kTanh:
|
|
return ExpandLogisticWithTanh(instruction);
|
|
case LogisticExpansionType::kExp:
|
|
return ExpandLogisticWithExp(instruction);
|
|
}
|
|
}
|
|
|
|
} // namespace xla
|