STT-tensorflow/tensorflow/compiler/tests/conv2d_test.py
Smit Hinsu c029459541 Support grouped convolution in Conv2DBackpropInput legalization to HLO
PiperOrigin-RevId: 352679305
Change-Id: I06455285564b9157c99c1bf94e8ea62bba2a22f6
2021-01-19 16:30:43 -08:00

882 lines
30 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Conv2D via the XLA JIT.
The canned results in these tests are created by running each test using the
Tensorflow CPU device and saving the output.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.compiler.tests import test_utils
from tensorflow.compiler.tests import xla_test
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_nn_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.platform import googletest
DATA_FORMATS = (
("_data_format_NHWC", "NHWC"),
("_data_format_NCHW", "NCHW"),
)
class Conv2DTest(xla_test.XLATestCase, parameterized.TestCase):
def _VerifyValues(self,
input_sizes=None,
filter_sizes=None,
strides=None,
dilations=None,
padding=None,
data_format_src="NHWC",
data_format_dst="NHWC",
expected=None):
"""Tests that tf.nn.conv2d produces the expected value.
Args:
input_sizes: Input tensor dimensions in
[batch, input_rows, input_cols, input_depth].
filter_sizes: Filter tensor dimensions in
[kernel_rows, kernel_cols, input_depth, output_depth].
strides: Strides.
dilations: RHS dilations.
padding: Padding type.
data_format_src: Data format input is in.
data_format_dst: Data format verification will run and input is converted
to.
expected: Expected output.
"""
total_size_1 = np.prod(input_sizes)
total_size_2 = np.prod(filter_sizes)
x1 = np.arange(1, total_size_1 + 1, dtype=np.float32).reshape(input_sizes)
x2 = np.arange(1, total_size_2 + 1, dtype=np.float32).reshape(filter_sizes)
strides = [1] + strides + [1]
if dilations is None:
dilations = [1, 1]
dilations = [1] + dilations + [1]
# Convert between data formats.
expected = test_utils.ConvertBetweenDataFormats(expected, data_format_src,
data_format_dst)
x1 = test_utils.ConvertBetweenDataFormats(x1, data_format_src,
data_format_dst)
input_sizes = test_utils.PermuteDimsBetweenDataFormats(
input_sizes, data_format_src, data_format_dst)
strides = test_utils.PermuteDimsBetweenDataFormats(strides, data_format_src,
data_format_dst)
dilations = test_utils.PermuteDimsBetweenDataFormats(
dilations, data_format_src, data_format_dst)
with self.session() as sess:
t1 = array_ops.placeholder(dtypes.float32, shape=input_sizes)
t2 = array_ops.placeholder(dtypes.float32, shape=filter_sizes)
with self.test_scope():
out = nn_ops.conv2d(
t1,
t2,
strides=strides,
padding=padding,
data_format=data_format_dst,
dilations=dilations)
value = sess.run(out, {t1: x1, t2: x2})
self.assertAllClose(expected, value, 1e-3)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x1Filter(self, data_format):
expected_output = np.reshape([
30.0, 36.0, 42.0, 66.0, 81.0, 96.0, 102.0, 126.0, 150.0, 138.0, 171.0,
204.0, 174.0, 216.0, 258.0, 210.0, 261.0, 312.0
], [1, 2, 3, 3])
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[1, 1, 3, 3],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Filter(self, data_format):
expected_output = np.reshape(
[2271.0, 2367.0, 2463.0, 2901.0, 3033.0, 3165.0], [1, 1, 2, 3])
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[2, 2, 3, 3],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Filter2x1Dilation(self, data_format):
expected_output = np.array([[[[72], [82], [92]], [[112], [122], [132]]]])
self._VerifyValues(
input_sizes=[1, 4, 4, 1],
filter_sizes=[2, 2, 1, 1],
strides=[1, 1],
dilations=[2, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2Filter(self, data_format):
expected_output = np.reshape([
231.0, 252.0, 273.0, 384.0, 423.0, 462.0, 690.0, 765.0, 840.0, 843.0,
936.0, 1029.0
], [1, 2, 2, 3])
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[1, 2, 3, 3],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterStride2(self, data_format):
expected_output = np.reshape([2271.0, 2367.0, 2463.0], [1, 1, 1, 3])
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[2, 2, 3, 3],
strides=[2, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterStride2Same(self, data_format):
expected_output = np.reshape(
[2271.0, 2367.0, 2463.0, 1230.0, 1305.0, 1380.0], [1, 1, 2, 3])
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[2, 2, 3, 3],
strides=[2, 2],
padding="SAME",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2DEmptyDilation(self, data_format):
self._VerifyValues(
input_sizes=[0, 2, 3, 3],
filter_sizes=[1, 1, 3, 3],
strides=[1, 1],
dilations=[2, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=np.zeros([0, 2, 3, 3]))
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterDilation(self, data_format):
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[2, 2, 3, 3],
strides=[1, 1],
dilations=[1, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=np.reshape([2667, 2781, 2895], [1, 1, 1, 3]))
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2FilterDilation(self, data_format):
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[1, 2, 3, 3],
strides=[1, 1],
dilations=[2, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=np.array([[[[231, 252, 273], [384, 423, 462]],
[[690, 765, 840], [843, 936, 1029]]]]))
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2DKernelSizeMatchesInputSizeDilation(self, data_format):
self._VerifyValues(
input_sizes=[1, 3, 3, 1],
filter_sizes=[2, 2, 1, 2],
strides=[1, 1],
dilations=[2, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=np.reshape([108, 128], [1, 1, 1, 2]))
class Conv2DBackpropInputTest(xla_test.XLATestCase, parameterized.TestCase):
def _VerifyValues(self,
input_sizes=None,
filter_sizes=None,
out_backprop_sizes=None,
strides=None,
dilations=None,
padding=None,
data_format_src="NHWC",
data_format_dst="NHWC",
expected=None):
"""Tests that gen_nn_ops.conv2d_backprop_input produces the expected output.
Args:
input_sizes: Input tensor dimensions in
[batch, input_rows, input_cols, input_depth].
filter_sizes: Filter tensor dimensions in
[kernel_rows, kernel_cols, input_depth, output_depth].
out_backprop_sizes: Output gradients tensor dimensions.
strides: Strides.
dilations: Dilations.
padding: Padding type.
data_format_src: Data format input is in.
data_format_dst: Data format verification will run and input is converted
to.
expected: Expected output.
"""
total_size_1 = np.prod(filter_sizes)
total_size_2 = np.prod(out_backprop_sizes)
x1 = np.arange(1, total_size_1 + 1, dtype=np.float32).reshape(filter_sizes)
x2 = np.arange(
1, total_size_2 + 1, dtype=np.float32).reshape(out_backprop_sizes)
strides = [1] + strides + [1]
if dilations is not None:
dilations = [1] + dilations + [1]
expected = np.reshape(expected, input_sizes)
# Convert between data formats.
expected = test_utils.ConvertBetweenDataFormats(expected, data_format_src,
data_format_dst)
x2 = test_utils.ConvertBetweenDataFormats(x2, data_format_src,
data_format_dst)
input_sizes = test_utils.PermuteDimsBetweenDataFormats(
input_sizes, data_format_src, data_format_dst)
out_backprop_sizes = test_utils.PermuteDimsBetweenDataFormats(
out_backprop_sizes, data_format_src, data_format_dst)
strides = test_utils.PermuteDimsBetweenDataFormats(strides, data_format_src,
data_format_dst)
if dilations is not None:
dilations = test_utils.PermuteDimsBetweenDataFormats(
dilations, data_format_src, data_format_dst)
with self.session() as sess:
t1 = array_ops.placeholder(dtypes.float32, shape=filter_sizes)
t2 = array_ops.placeholder(dtypes.float32, shape=out_backprop_sizes)
with self.test_scope():
out = gen_nn_ops.conv2d_backprop_input(
input_sizes=input_sizes,
filter=t1,
out_backprop=t2,
strides=strides,
dilations=dilations,
padding=padding,
data_format=data_format_dst)
value = sess.run(out, {t1: x1, t2: x2})
self.assertAllEqual(input_sizes, value.shape)
self.assertAllClose(expected, value, 1e-3)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x1Filter(self, data_format):
expected_output = [
5, 11, 17, 11, 25, 39, 17, 39, 61, 23, 53, 83, 29, 67, 105, 35, 81, 127,
41, 95, 149, 47, 109, 171, 53, 123, 193, 59, 137, 215, 65, 151, 237, 71,
165, 259, 77, 179, 281, 83, 193, 303, 89, 207, 325, 95, 221, 347.
]
self._VerifyValues(
input_sizes=[1, 4, 4, 3],
filter_sizes=[1, 1, 3, 2],
out_backprop_sizes=[1, 4, 4, 2],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2FilterStride3Width5(self, data_format):
expected_output = [1, 2, 0, 2, 4]
self._VerifyValues(
input_sizes=[1, 1, 5, 1],
filter_sizes=[1, 2, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[3, 3],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2FilterStride3Width6(self, data_format):
expected_output = [1, 2, 0, 2, 4, 0]
self._VerifyValues(
input_sizes=[1, 1, 6, 1],
filter_sizes=[1, 2, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[3, 3],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2FilterStride3Width7(self, data_format):
expected_output = [1, 2, 0, 2, 4, 0, 0]
self._VerifyValues(
input_sizes=[1, 1, 7, 1],
filter_sizes=[1, 2, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[3, 3],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterC1Same(self, data_format):
expected_output = [1, 4, 7, 7, 23, 33]
self._VerifyValues(
input_sizes=[1, 2, 3, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[1, 2, 3, 1],
strides=[1, 1],
padding="SAME",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Filter(self, data_format):
expected_output = [
14, 32, 50, 100, 163, 226, 167, 212, 257, 122, 140, 158, 478, 541, 604,
437, 482, 527
]
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[2, 2, 3, 3],
out_backprop_sizes=[1, 1, 2, 3],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterSame(self, data_format):
expected_output = [
14, 32, 50, 100, 163, 226, 217, 334, 451, 190, 307, 424, 929, 1217,
1505, 1487, 1883, 2279
]
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[2, 2, 3, 3],
out_backprop_sizes=[1, 2, 3, 3],
strides=[1, 1],
padding="SAME",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2Filter(self, data_format):
expected_output = [1, 4, 4, 3, 10, 8, 5, 16, 12]
self._VerifyValues(
input_sizes=[1, 3, 3, 1],
filter_sizes=[1, 2, 1, 1],
out_backprop_sizes=[1, 3, 2, 1],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2FilterSame(self, data_format):
expected_output = [1, 4, 7, 4, 13, 16, 7, 22, 25]
self._VerifyValues(
input_sizes=[1, 3, 3, 1],
filter_sizes=[1, 2, 1, 1],
out_backprop_sizes=[1, 3, 3, 1],
strides=[1, 1],
padding="SAME",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterStride2(self, data_format):
expected_output = [1, 2, 5, 4, 6, 0, 0, 0, 0, 0, 3, 6, 13, 8, 12]
self._VerifyValues(
input_sizes=[1, 3, 5, 1],
filter_sizes=[1, 3, 1, 1],
out_backprop_sizes=[1, 2, 2, 1],
strides=[2, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterStride2Same(self, data_format):
expected_output = [1, 2, 2, 3, 4, 6]
self._VerifyValues(
input_sizes=[1, 2, 3, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[2, 2],
padding="SAME",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Depth3ValidBackpropInputStride1x1Dilation2x1(
self, data_format):
self._VerifyValues(
input_sizes=[1, 3, 6, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[1, 1, 5, 1],
strides=[1, 1],
dilations=[2, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=[1, 4, 7, 10, 13, 10, 0, 0, 0, 0, 0, 0, 3, 10, 17, 24, 31, 20])
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Depth1ValidBackpropInputDilation1x2(self, data_format):
self._VerifyValues(
input_sizes=[1, 2, 3, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[1, 1, 1, 1],
strides=[1, 1],
dilations=[1, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=[1, 0, 2, 3, 0, 4])
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2DEmptyBackpropInputDilation1x2(self, data_format):
self._VerifyValues(
input_sizes=[0, 2, 3, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[0, 1, 1, 1],
strides=[1, 1],
dilations=[1, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=np.zeros([0]))
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Depth3ValidBackpropInputDilation2x1(self, data_format):
# The GPU version of this test is not very stable. So adjusting the
# error threshold to 1e-4.
self._VerifyValues(
input_sizes=[1, 3, 2, 3],
filter_sizes=[2, 2, 3, 3],
out_backprop_sizes=[1, 1, 1, 3],
strides=[1, 1],
dilations=[2, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=[
14, 32, 50, 68, 86, 104, 0, 0, 0, 0, 0, 0, 122, 140, 158, 176, 194,
212
])
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2DKernelSizeMatchesInputSizeBackpropInputDilation2x2(
self, data_format):
self._VerifyValues(
input_sizes=[1, 3, 3, 1],
filter_sizes=[2, 2, 1, 2],
out_backprop_sizes=[1, 1, 1, 2],
strides=[1, 1],
dilations=[2, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=[5, 0, 11, 0, 0, 0, 17, 0, 23])
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2DGroupedFilter(self, data_format):
expected_output = [
5, 17, 29, 25, 53, 81, 41, 53, 65, 109, 137, 165, 77, 89, 101, 193, 221,
249, 113, 125, 137, 277, 305, 333
]
self._VerifyValues(
input_sizes=[1, 2, 2, 6],
filter_sizes=[2, 2, 3, 4],
out_backprop_sizes=[1, 1, 1, 4],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
class Conv2DBackpropFilterTest(xla_test.XLATestCase, parameterized.TestCase):
def _VerifyValues(self,
input_sizes=None,
filter_sizes=None,
out_backprop_sizes=None,
strides=None,
dilations=None,
padding=None,
data_format_src="NHWC",
data_format_dst="NHWC",
expected=None):
"""Tests that gen_nn_ops.conv2d_backprop_filter produces the right output.
Args:
input_sizes: Input tensor dimensions in
[batch, input_rows, input_cols, input_depth].
filter_sizes: Filter tensor dimensions in
[kernel_rows, kernel_cols, input_depth, output_depth].
out_backprop_sizes: Output gradients tensor dimensions.
strides: Stride.
dilations: Dilations.
padding: Padding type.
data_format_src: Data format input is in.
data_format_dst: Data format verification will run and input is converted
to.
expected: Expected output.
"""
total_size_1 = np.prod(input_sizes)
total_size_2 = np.prod(out_backprop_sizes)
x1 = np.arange(1, total_size_1 + 1, dtype=np.float32).reshape(input_sizes)
x2 = np.arange(
1, total_size_2 + 1, dtype=np.float32).reshape(out_backprop_sizes)
strides = [1] + strides + [1]
if dilations is not None:
dilations = [1] + dilations + [1]
expected = np.reshape(expected, filter_sizes)
# Convert between data formats.
x1 = test_utils.ConvertBetweenDataFormats(x1, data_format_src,
data_format_dst)
x2 = test_utils.ConvertBetweenDataFormats(x2, data_format_src,
data_format_dst)
input_sizes = test_utils.PermuteDimsBetweenDataFormats(
input_sizes, data_format_src, data_format_dst)
out_backprop_sizes = test_utils.PermuteDimsBetweenDataFormats(
out_backprop_sizes, data_format_src, data_format_dst)
strides = test_utils.PermuteDimsBetweenDataFormats(strides, data_format_src,
data_format_dst)
if dilations is not None:
dilations = test_utils.PermuteDimsBetweenDataFormats(
dilations, data_format_src, data_format_dst)
with self.session() as sess:
t1 = array_ops.placeholder(dtypes.float32, shape=input_sizes)
t2 = array_ops.placeholder(dtypes.float32, shape=out_backprop_sizes)
with self.test_scope():
tensor = gen_nn_ops.conv2d_backprop_filter(
input=t1,
filter_sizes=filter_sizes,
out_backprop=t2,
strides=strides,
dilations=dilations,
padding=padding,
data_format=data_format_dst)
value = sess.run(tensor, {t1: x1, t2: x2})
self.assertAllEqual(filter_sizes, value.shape)
self.assertAllClose(expected, value, 1e-3)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x1Filter(self, data_format):
expected_output = [8056, 8432, 8312, 8704, 8568, 8976]
self._VerifyValues(
input_sizes=[1, 4, 4, 3],
filter_sizes=[1, 1, 3, 2],
out_backprop_sizes=[1, 4, 4, 2],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2Filter(self, data_format):
expected_output = [120, 141]
self._VerifyValues(
input_sizes=[1, 3, 3, 1],
filter_sizes=[1, 2, 1, 1],
out_backprop_sizes=[1, 3, 2, 1],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterDepth1(self, data_format):
expected_output = [5, 8, 14, 17]
self._VerifyValues(
input_sizes=[1, 2, 3, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Filter(self, data_format):
expected_output = [
17, 22, 27, 22, 29, 36, 27, 36, 45, 32, 43, 54, 37, 50, 63, 42, 57, 72,
62, 85, 108, 67, 92, 117, 72, 99, 126, 77, 106, 135, 82, 113, 144, 87,
120, 153
]
self._VerifyValues(
input_sizes=[1, 2, 3, 3],
filter_sizes=[2, 2, 3, 3],
out_backprop_sizes=[1, 1, 2, 3],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2FilterStride3Width5(self, data_format):
expected_output = [9, 12]
self._VerifyValues(
input_sizes=[1, 1, 5, 1],
filter_sizes=[1, 2, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[3, 3],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2FilterStride3Width6(self, data_format):
expected_output = [9, 12]
self._VerifyValues(
input_sizes=[1, 1, 6, 1],
filter_sizes=[1, 2, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[3, 3],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x2FilterStride3Width7(self, data_format):
expected_output = [9, 12]
self._VerifyValues(
input_sizes=[1, 1, 7, 1],
filter_sizes=[1, 2, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[3, 3],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x3Filter(self, data_format):
expected_output = [5, 8, 11]
self._VerifyValues(
input_sizes=[1, 1, 4, 1],
filter_sizes=[1, 3, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x3FilterSame(self, data_format):
expected_output = [20, 30, 20]
self._VerifyValues(
input_sizes=[1, 1, 4, 1],
filter_sizes=[1, 3, 1, 1],
out_backprop_sizes=[1, 1, 4, 1],
strides=[1, 1],
padding="SAME",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D1x3FilterSameOutbackprop2(self, data_format):
expected_output = [7, 10, 3]
self._VerifyValues(
input_sizes=[1, 1, 4, 1],
filter_sizes=[1, 3, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[2, 2],
padding="SAME",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterC1Same(self, data_format):
expected_output = [91, 58, 32, 17]
self._VerifyValues(
input_sizes=[1, 2, 3, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[1, 2, 3, 1],
strides=[1, 1],
padding="SAME",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterStride2(self, data_format):
expected_output = [92, 102, 112]
self._VerifyValues(
input_sizes=[1, 3, 5, 1],
filter_sizes=[1, 3, 1, 1],
out_backprop_sizes=[1, 2, 2, 1],
strides=[2, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2FilterStride2Same(self, data_format):
expected_output = [7, 2, 16, 5]
self._VerifyValues(
input_sizes=[1, 2, 3, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[1, 1, 2, 1],
strides=[2, 2],
padding="SAME",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Depth3ValidBackpropFilterStride1x1Dilation2x1(
self, data_format):
self._VerifyValues(
input_sizes=[1, 3, 6, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[1, 1, 5, 1],
strides=[1, 1],
dilations=[2, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=[55, 70, 235, 250])
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Depth1ValidBackpropFilterDilation1x2(self, data_format):
self._VerifyValues(
input_sizes=[1, 2, 3, 1],
filter_sizes=[2, 2, 1, 1],
out_backprop_sizes=[1, 1, 1, 1],
strides=[1, 1],
dilations=[1, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=[1, 3, 4, 6])
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2DEmptyBackpropFilterDilation1x2(self, data_format):
self._VerifyValues(
input_sizes=[1, 2, 3, 1],
filter_sizes=[2, 2, 1, 0],
out_backprop_sizes=[1, 1, 1, 0],
strides=[1, 1],
dilations=[1, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=np.zeros([0]))
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2D2x2Depth3ValidBackpropFilterDilation2x2(self, data_format):
self._VerifyValues(
input_sizes=[1, 3, 4, 3],
filter_sizes=[2, 2, 3, 3],
out_backprop_sizes=[1, 1, 2, 3],
strides=[1, 1],
dilations=[2, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=[
17, 22, 27, 22, 29, 36, 27, 36, 45, 47, 64, 81, 52, 71, 90, 57, 78,
99, 137, 190, 243, 142, 197, 252, 147, 204, 261, 167, 232, 297, 172,
239, 306, 177, 246, 315
])
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2DKernelSizeMatchesInputSizeBackpropFilterDilation2x2(
self, data_format):
self._VerifyValues(
input_sizes=[1, 3, 3, 1],
filter_sizes=[2, 2, 1, 2],
out_backprop_sizes=[1, 1, 1, 2],
strides=[1, 1],
dilations=[2, 2],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=[1, 2, 3, 6, 7, 14, 9, 18])
@parameterized.named_parameters(*DATA_FORMATS)
def testConv2DGroupedFilter(self, data_format):
expected_output = [1, 4, 3, 8, 5, 12, 7, 16]
self._VerifyValues(
input_sizes=[1, 2, 2, 2],
filter_sizes=[2, 2, 1, 2],
out_backprop_sizes=[1, 1, 1, 2],
strides=[1, 1],
padding="VALID",
data_format_src="NHWC",
data_format_dst=data_format,
expected=expected_output)
if __name__ == "__main__":
googletest.main()