STT-tensorflow/tf/tensorflow/python/keras/preprocessing/text_test.py
Mihai Maruseac 06923bb4fe initial
2021-01-21 09:06:36 -08:00

144 lines
5.0 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for text data preprocessing utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.keras.preprocessing import text as preprocessing_text
from tensorflow.python.platform import test
class TestText(test.TestCase):
def test_one_hot(self):
text = 'The cat sat on the mat.'
encoded = preprocessing_text.one_hot(text, 5)
self.assertEqual(len(encoded), 6)
self.assertLessEqual(np.max(encoded), 4)
self.assertGreaterEqual(np.min(encoded), 0)
# Test on unicode.
text = u'The cat sat on the mat.'
encoded = preprocessing_text.one_hot(text, 5)
self.assertEqual(len(encoded), 6)
self.assertLessEqual(np.max(encoded), 4)
self.assertGreaterEqual(np.min(encoded), 0)
def test_tokenizer(self):
texts = [
'The cat sat on the mat.',
'The dog sat on the log.',
'Dogs and cats living together.'
]
tokenizer = preprocessing_text.Tokenizer(num_words=10)
tokenizer.fit_on_texts(texts)
sequences = []
for seq in tokenizer.texts_to_sequences_generator(texts):
sequences.append(seq)
self.assertLess(np.max(np.max(sequences)), 10)
self.assertEqual(np.min(np.min(sequences)), 1)
tokenizer.fit_on_sequences(sequences)
for mode in ['binary', 'count', 'tfidf', 'freq']:
matrix = tokenizer.texts_to_matrix(texts, mode)
self.assertEqual(matrix.shape, (3, 10))
def test_hashing_trick_hash(self):
text = 'The cat sat on the mat.'
encoded = preprocessing_text.hashing_trick(text, 5)
self.assertEqual(len(encoded), 6)
self.assertLessEqual(np.max(encoded), 4)
self.assertGreaterEqual(np.min(encoded), 1)
def test_hashing_trick_md5(self):
text = 'The cat sat on the mat.'
encoded = preprocessing_text.hashing_trick(
text, 5, hash_function='md5')
self.assertEqual(len(encoded), 6)
self.assertLessEqual(np.max(encoded), 4)
self.assertGreaterEqual(np.min(encoded), 1)
def test_tokenizer_oov_flag(self):
x_train = ['This text has only known words']
x_test = ['This text has some unknown words'] # 2 OOVs: some, unknown
# Default, without OOV flag
tokenizer = preprocessing_text.Tokenizer()
tokenizer.fit_on_texts(x_train)
x_test_seq = tokenizer.texts_to_sequences(x_test)
self.assertEqual(len(x_test_seq[0]), 4) # discards 2 OOVs
# With OOV feature
tokenizer = preprocessing_text.Tokenizer(oov_token='<unk>')
tokenizer.fit_on_texts(x_train)
x_test_seq = tokenizer.texts_to_sequences(x_test)
self.assertEqual(len(x_test_seq[0]), 6) # OOVs marked in place
def test_sequential_fit(self):
texts = [
'The cat sat on the mat.', 'The dog sat on the log.',
'Dogs and cats living together.'
]
word_sequences = [['The', 'cat', 'is', 'sitting'],
['The', 'dog', 'is', 'standing']]
tokenizer = preprocessing_text.Tokenizer()
tokenizer.fit_on_texts(texts)
tokenizer.fit_on_texts(word_sequences)
self.assertEqual(tokenizer.document_count, 5)
tokenizer.texts_to_matrix(texts)
tokenizer.texts_to_matrix(word_sequences)
def test_text_to_word_sequence(self):
text = 'hello! ? world!'
seq = preprocessing_text.text_to_word_sequence(text)
self.assertEqual(seq, ['hello', 'world'])
def test_text_to_word_sequence_multichar_split(self):
text = 'hello!stop?world!'
seq = preprocessing_text.text_to_word_sequence(text, split='stop')
self.assertEqual(seq, ['hello', 'world'])
def test_text_to_word_sequence_unicode(self):
text = u'ali! veli? kırk dokuz elli'
seq = preprocessing_text.text_to_word_sequence(text)
self.assertEqual(seq, [u'ali', u'veli', u'kırk', u'dokuz', u'elli'])
def test_text_to_word_sequence_unicode_multichar_split(self):
text = u'ali!stopveli?stopkırkstopdokuzstopelli'
seq = preprocessing_text.text_to_word_sequence(text, split='stop')
self.assertEqual(seq, [u'ali', u'veli', u'kırk', u'dokuz', u'elli'])
def test_tokenizer_unicode(self):
texts = [
u'ali veli kırk dokuz elli', u'ali veli kırk dokuz elli veli kırk dokuz'
]
tokenizer = preprocessing_text.Tokenizer(num_words=5)
tokenizer.fit_on_texts(texts)
self.assertEqual(len(tokenizer.word_counts), 5)
if __name__ == '__main__':
test.main()