STT-tensorflow/tf/tensorflow/python/keras/layers/pooling_test.py
Mihai Maruseac 06923bb4fe initial
2021-01-21 09:06:36 -08:00

282 lines
9.9 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for pooling layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.keras import combinations
from tensorflow.python.keras import testing_utils
from tensorflow.python.ops.ragged import ragged_factory_ops
from tensorflow.python.platform import test
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class GlobalPoolingTest(test.TestCase, parameterized.TestCase):
def test_globalpooling_1d(self):
testing_utils.layer_test(
keras.layers.pooling.GlobalMaxPooling1D, input_shape=(3, 4, 5))
testing_utils.layer_test(
keras.layers.pooling.GlobalMaxPooling1D,
kwargs={'data_format': 'channels_first'},
input_shape=(3, 4, 5))
testing_utils.layer_test(
keras.layers.pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5))
testing_utils.layer_test(
keras.layers.pooling.GlobalAveragePooling1D,
kwargs={'data_format': 'channels_first'},
input_shape=(3, 4, 5))
def test_globalpooling_1d_masking_support(self):
model = keras.Sequential()
model.add(keras.layers.Masking(mask_value=0., input_shape=(None, 4)))
model.add(keras.layers.GlobalAveragePooling1D())
model.compile(loss='mae', optimizer='rmsprop')
model_input = np.random.random((2, 3, 4))
model_input[0, 1:, :] = 0
output = model.predict(model_input)
self.assertAllClose(output[0], model_input[0, 0, :])
def test_globalpooling_1d_with_ragged(self):
ragged_data = ragged_factory_ops.constant(
[[[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], [[1.0, 1.0], [2.0, 2.0]]],
ragged_rank=1)
dense_data = ragged_data.to_tensor()
inputs = keras.Input(shape=(None, 2), dtype='float32', ragged=True)
out = keras.layers.GlobalAveragePooling1D()(inputs)
model = keras.models.Model(inputs=inputs, outputs=out)
output_ragged = model.predict(ragged_data, steps=1)
inputs = keras.Input(shape=(None, 2), dtype='float32')
masking = keras.layers.Masking(mask_value=0., input_shape=(3, 2))(inputs)
out = keras.layers.GlobalAveragePooling1D()(masking)
model = keras.models.Model(inputs=inputs, outputs=out)
output_dense = model.predict(dense_data, steps=1)
self.assertAllEqual(output_ragged, output_dense)
def test_globalpooling_2d_with_ragged(self):
ragged_data = ragged_factory_ops.constant(
[[[[1.0], [1.0]], [[2.0], [2.0]], [[3.0], [3.0]]],
[[[1.0], [1.0]], [[2.0], [2.0]]]],
ragged_rank=1)
dense_data = ragged_data.to_tensor()
inputs = keras.Input(shape=(None, 2, 1), dtype='float32', ragged=True)
out = keras.layers.GlobalMaxPooling2D()(inputs)
model = keras.models.Model(inputs=inputs, outputs=out)
output_ragged = model.predict(ragged_data, steps=1)
inputs = keras.Input(shape=(None, 2, 1), dtype='float32')
out = keras.layers.GlobalMaxPooling2D()(inputs)
model = keras.models.Model(inputs=inputs, outputs=out)
output_dense = model.predict(dense_data, steps=1)
self.assertAllEqual(output_ragged, output_dense)
def test_globalpooling_3d_with_ragged(self):
ragged_data = ragged_factory_ops.constant(
[[[[[1.0]], [[1.0]]], [[[2.0]], [[2.0]]], [[[3.0]], [[3.0]]]],
[[[[1.0]], [[1.0]]], [[[2.0]], [[2.0]]]]],
ragged_rank=1)
inputs = keras.Input(shape=(None, 2, 1, 1), dtype='float32', ragged=True)
out = keras.layers.GlobalAveragePooling3D()(inputs)
model = keras.models.Model(inputs=inputs, outputs=out)
output_ragged = model.predict(ragged_data, steps=1)
# Because GlobalAveragePooling3D doesn't support masking, the results
# cannot be compared with its dense equivalent.
expected_output = constant_op.constant([[2.0], [1.5]])
self.assertAllEqual(output_ragged, expected_output)
def test_globalpooling_2d(self):
testing_utils.layer_test(
keras.layers.pooling.GlobalMaxPooling2D,
kwargs={'data_format': 'channels_first'},
input_shape=(3, 4, 5, 6))
testing_utils.layer_test(
keras.layers.pooling.GlobalMaxPooling2D,
kwargs={'data_format': 'channels_last'},
input_shape=(3, 5, 6, 4))
testing_utils.layer_test(
keras.layers.pooling.GlobalAveragePooling2D,
kwargs={'data_format': 'channels_first'},
input_shape=(3, 4, 5, 6))
testing_utils.layer_test(
keras.layers.pooling.GlobalAveragePooling2D,
kwargs={'data_format': 'channels_last'},
input_shape=(3, 5, 6, 4))
def test_globalpooling_3d(self):
testing_utils.layer_test(
keras.layers.pooling.GlobalMaxPooling3D,
kwargs={'data_format': 'channels_first'},
input_shape=(3, 4, 3, 4, 3))
testing_utils.layer_test(
keras.layers.pooling.GlobalMaxPooling3D,
kwargs={'data_format': 'channels_last'},
input_shape=(3, 4, 3, 4, 3))
testing_utils.layer_test(
keras.layers.pooling.GlobalAveragePooling3D,
kwargs={'data_format': 'channels_first'},
input_shape=(3, 4, 3, 4, 3))
testing_utils.layer_test(
keras.layers.pooling.GlobalAveragePooling3D,
kwargs={'data_format': 'channels_last'},
input_shape=(3, 4, 3, 4, 3))
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class Pooling2DTest(test.TestCase, parameterized.TestCase):
def test_maxpooling_2d(self):
pool_size = (3, 3)
for strides in [(1, 1), (2, 2)]:
testing_utils.layer_test(
keras.layers.MaxPooling2D,
kwargs={
'strides': strides,
'padding': 'valid',
'pool_size': pool_size
},
input_shape=(3, 5, 6, 4))
def test_averagepooling_2d(self):
testing_utils.layer_test(
keras.layers.AveragePooling2D,
kwargs={
'strides': (2, 2),
'padding': 'same',
'pool_size': (2, 2)
},
input_shape=(3, 5, 6, 4))
testing_utils.layer_test(
keras.layers.AveragePooling2D,
kwargs={
'strides': (2, 2),
'padding': 'valid',
'pool_size': (3, 3)
},
input_shape=(3, 5, 6, 4))
# This part of the test can only run on GPU but doesn't appear
# to be properly assigned to a GPU when running in eager mode.
if not context.executing_eagerly():
# Only runs on GPU with CUDA, channels_first is not supported on CPU.
# TODO(b/62340061): Support channels_first on CPU.
if test.is_gpu_available(cuda_only=True):
testing_utils.layer_test(
keras.layers.AveragePooling2D,
kwargs={
'strides': (1, 1),
'padding': 'valid',
'pool_size': (2, 2),
'data_format': 'channels_first'
},
input_shape=(3, 4, 5, 6))
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class Pooling3DTest(test.TestCase, parameterized.TestCase):
def test_maxpooling_3d(self):
pool_size = (3, 3, 3)
testing_utils.layer_test(
keras.layers.MaxPooling3D,
kwargs={
'strides': 2,
'padding': 'valid',
'pool_size': pool_size
},
input_shape=(3, 11, 12, 10, 4))
testing_utils.layer_test(
keras.layers.MaxPooling3D,
kwargs={
'strides': 3,
'padding': 'valid',
'data_format': 'channels_first',
'pool_size': pool_size
},
input_shape=(3, 4, 11, 12, 10))
def test_averagepooling_3d(self):
pool_size = (3, 3, 3)
testing_utils.layer_test(
keras.layers.AveragePooling3D,
kwargs={
'strides': 2,
'padding': 'valid',
'pool_size': pool_size
},
input_shape=(3, 11, 12, 10, 4))
testing_utils.layer_test(
keras.layers.AveragePooling3D,
kwargs={
'strides': 3,
'padding': 'valid',
'data_format': 'channels_first',
'pool_size': pool_size
},
input_shape=(3, 4, 11, 12, 10))
@combinations.generate(combinations.combine(mode=['graph', 'eager']))
class Pooling1DTest(test.TestCase, parameterized.TestCase):
def test_maxpooling_1d(self):
for padding in ['valid', 'same']:
for stride in [1, 2]:
testing_utils.layer_test(
keras.layers.MaxPooling1D,
kwargs={
'strides': stride,
'padding': padding
},
input_shape=(3, 5, 4))
testing_utils.layer_test(
keras.layers.MaxPooling1D,
kwargs={'data_format': 'channels_first'},
input_shape=(3, 2, 6))
def test_averagepooling_1d(self):
for padding in ['valid', 'same']:
for stride in [1, 2]:
testing_utils.layer_test(
keras.layers.AveragePooling1D,
kwargs={
'strides': stride,
'padding': padding
},
input_shape=(3, 5, 4))
testing_utils.layer_test(
keras.layers.AveragePooling1D,
kwargs={'data_format': 'channels_first'},
input_shape=(3, 2, 6))
if __name__ == '__main__':
test.main()