224 lines
9.2 KiB
C++
224 lines
9.2 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/op_macros.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
// Softmax parameter data that persists in user_data
|
|
static constexpr int kInt16LUTArraySize = 513;
|
|
|
|
TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
|
|
const TfLiteTensor* input,
|
|
TfLiteTensor* output,
|
|
const TfLiteSoftmaxParams* params,
|
|
SoftmaxParams* op_data) {
|
|
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 ||
|
|
input->type == kTfLiteInt16) {
|
|
if (input->type == kTfLiteUInt8) {
|
|
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8);
|
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
|
|
} else if (input->type == kTfLiteInt16) {
|
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
|
|
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768,
|
|
(0.001f * 1.f / 32768));
|
|
} else { // input->type == kTfLiteInt8
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
|
|
if (output->type == kTfLiteInt16) {
|
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768);
|
|
TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536,
|
|
(0.001f * 1.f / 65536));
|
|
} else { // output->type == kTfLiteint8
|
|
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
|
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128);
|
|
TF_LITE_ENSURE(context, output->params.scale == 1.f / 256);
|
|
}
|
|
}
|
|
|
|
static const int kScaledDiffIntegerBits = 5;
|
|
|
|
// Calculate input_multiplier and input_left_shift
|
|
if (input->type == kTfLiteInt16) {
|
|
int input_left_shift;
|
|
double input_scale_beta_rescale =
|
|
static_cast<double>(input->params.scale) *
|
|
static_cast<double>(params->beta) /
|
|
(10.0 / 65535.0); // scale the input_diff such that [-65535, 0]
|
|
// correspond to [-10.0, 0.0]
|
|
QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier,
|
|
&input_left_shift);
|
|
op_data->input_left_shift = input_left_shift;
|
|
} else {
|
|
int input_left_shift;
|
|
tflite::PreprocessSoftmaxScaling(
|
|
static_cast<double>(params->beta),
|
|
static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
|
|
&op_data->input_multiplier, &input_left_shift);
|
|
op_data->input_left_shift = input_left_shift;
|
|
op_data->diff_min =
|
|
-1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits,
|
|
op_data->input_left_shift);
|
|
}
|
|
} else {
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
|
|
op_data->beta = static_cast<double>(params->beta);
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
// Takes a tensor and performs softmax along the last dimension.
|
|
void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
|
|
const SoftmaxParams& op_data) {
|
|
tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
}
|
|
|
|
void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
|
|
const SoftmaxParams& op_data) {
|
|
if (input->type == kTfLiteUInt8) {
|
|
tflite::reference_ops::Softmax(
|
|
op_data, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<uint8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
} else if (input->type == kTfLiteInt8) {
|
|
if (output->type == kTfLiteInt16) {
|
|
tflite::reference_ops::Softmax(
|
|
op_data, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int16_t>(output));
|
|
} else {
|
|
tflite::reference_ops::Softmax(
|
|
op_data, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
}
|
|
} else {
|
|
tflite::reference_ops::SoftmaxInt16(
|
|
op_data, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int16_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int16_t>(output));
|
|
}
|
|
}
|
|
|
|
void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
|
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
|
return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams));
|
|
}
|
|
|
|
TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
const TfLiteTensor* input = GetInput(context, node, 0);
|
|
TF_LITE_ENSURE(context, input != nullptr);
|
|
TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
|
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
|
TF_LITE_ENSURE(context, output != nullptr);
|
|
|
|
TF_LITE_ENSURE(context, node->user_data != nullptr);
|
|
SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data);
|
|
// Only allocate LUTs for KTfLiteInt16 data type
|
|
if (input->type == kTfLiteInt16) {
|
|
void* raw_exp_lut = context->AllocatePersistentBuffer(
|
|
context, sizeof(int16_t) * kInt16LUTArraySize);
|
|
TF_LITE_ENSURE(context, raw_exp_lut != nullptr);
|
|
op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut);
|
|
void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer(
|
|
context, sizeof(int16_t) * kInt16LUTArraySize);
|
|
TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr);
|
|
op_data->one_over_one_plus_x_lut =
|
|
reinterpret_cast<int16_t*>(one_over_one_plus_x_lut);
|
|
}
|
|
|
|
if (output->type == kTfLiteInt16) {
|
|
TF_LITE_ENSURE(context, input->type == kTfLiteInt8 ||
|
|
input->type == kTfLiteUInt8 ||
|
|
input->type == kTfLiteInt16);
|
|
} else {
|
|
TF_LITE_ENSURE_EQ(context, input->type, output->type);
|
|
}
|
|
|
|
// Populate LUT if required
|
|
if (input->type == kTfLiteInt16) {
|
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
|
|
// exp LUT only used on negative values
|
|
// we consider exp(-10.0) is insignificant to accumulation
|
|
gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f,
|
|
op_data->exp_lut, kInt16LUTArraySize);
|
|
gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f,
|
|
op_data->one_over_one_plus_x_lut, kInt16LUTArraySize);
|
|
op_data->zero_point = output->params.zero_point;
|
|
op_data->scale = output->params.scale;
|
|
}
|
|
|
|
auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
|
|
return CalculateSoftmaxParams(context, input, output, params, op_data);
|
|
}
|
|
|
|
TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
|
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
|
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
SoftmaxParams op_data = *static_cast<SoftmaxParams*>(node->user_data);
|
|
|
|
switch (input->type) {
|
|
case kTfLiteFloat32: {
|
|
SoftmaxFloat(input, output, op_data);
|
|
return kTfLiteOk;
|
|
}
|
|
case kTfLiteInt8:
|
|
case kTfLiteUInt8:
|
|
case kTfLiteInt16: {
|
|
SoftmaxQuantized(input, output, op_data);
|
|
return kTfLiteOk;
|
|
}
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
|
TfLiteTypeGetName(input->type), input->type);
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
TfLiteRegistration Register_SOFTMAX() {
|
|
return {/*init=*/SoftmaxInit,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/SoftmaxPrepare,
|
|
/*invoke=*/SoftmaxEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
} // namespace tflite
|