STT-tensorflow/tensorflow/lite/testing/op_tests/where.py
David Rim d981631696 Make select quantizable
PiperOrigin-RevId: 355053742
Change-Id: Iba3448010822e1693e8acb1c470d2db9997e437e
2021-02-01 16:42:58 -08:00

94 lines
3.6 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for where."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_where_tests(options):
"""Make a set of tests to do where."""
test_parameters = [
{
"input_dtype": [tf.float32, tf.int32],
"input_shape_set": [([1, 2, 3, 4], [1, 2, 3, 4]),],
"use_where_v2": [False, True],
"fully_quantize": [False],
},
{
"input_dtype": [tf.float32, tf.int32],
"input_shape_set": [([], []),],
"use_where_v2": [],
"fully_quantize": [False],
},
{
"input_dtype": [tf.float32],
"input_shape_set": [([1, 2, 3, 4], [1, 2, 3, 4]), ([], []),],
"use_where_v2": [False, True],
"fully_quantize": [True],
},
]
# High dimension broadcasting support in MLIR converter.
if options.use_experimental_converter:
test_parameters = test_parameters + [
{
"input_dtype": [tf.float32, tf.int32],
"input_shape_set": [([8, 7, 6, 5, 4, 3, 2, 1], [4, 3, 2, 1]),],
"use_where_v2": [True],
"fully_quantize": [False],
},
{
"input_dtype": [tf.float32],
"input_shape_set": [([8, 7, 6, 5, 4, 3, 2, 1], [4, 3, 2, 1]),],
"use_where_v2": [True],
"fully_quantize": [True],
},
]
def build_graph(parameters):
"""Build the where op testing graph."""
input_value1 = tf.compat.v1.placeholder(
dtype=parameters["input_dtype"],
name="input2",
shape=parameters["input_shape_set"][0])
input_value2 = tf.compat.v1.placeholder(
dtype=parameters["input_dtype"],
name="input3",
shape=parameters["input_shape_set"][1])
less = tf.less(input_value1, input_value2)
where = tf.where_v2 if parameters["use_where_v2"] else tf.where
out = where(less, input_value1, input_value2)
return [input_value1, input_value2], [out]
def build_inputs(parameters, sess, inputs, outputs):
input_value1 = create_tensor_data(parameters["input_dtype"],
parameters["input_shape_set"][0],
min_value=-1, max_value=1)
input_value2 = create_tensor_data(parameters["input_dtype"],
parameters["input_shape_set"][1],
min_value=-1, max_value=1)
return [input_value1, input_value2], sess.run(
outputs, feed_dict=dict(zip(inputs, [input_value1, input_value2])))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)