STT-tensorflow/tensorflow/lite/testing/op_tests/padv2.py
Nupur Garg 2fb71ff8cf Make generate_examples run in 2.0.
PiperOrigin-RevId: 298616596
Change-Id: Ib0be0a8929e75634924c28165f6fcd998b77add9
2020-03-03 08:59:39 -08:00

92 lines
3.1 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for padv2."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
@register_make_test_function()
def make_padv2_tests(options):
"""Make a set of tests to do padv2."""
# TODO(nupurgarg): Add test for tf.uint8.
test_parameters = [
# 4D:
{
"dtype": [tf.int32, tf.int64, tf.float32],
"input_shape": [[1, 1, 2, 1], [2, 1, 1, 1]],
"paddings": [[[0, 0], [0, 1], [2, 3], [0, 0]],
[[0, 1], [0, 0], [0, 0], [2, 3]]],
"constant_paddings": [True, False],
"constant_values": [0, 2],
},
# 2D:
{
"dtype": [tf.int32, tf.int64, tf.float32],
"input_shape": [[1, 2]],
"paddings": [[[0, 1], [2, 3]]],
"constant_paddings": [True, False],
"constant_values": [0, 2],
},
# 1D:
{
"dtype": [tf.int32],
"input_shape": [[1]],
"paddings": [[[0, 1]]],
"constant_paddings": [False],
"constant_values": [0, 2],
},
]
def build_graph(parameters):
"""Build a pad graph given `parameters`."""
input_tensor = tf.compat.v1.placeholder(
dtype=parameters["dtype"],
name="input",
shape=parameters["input_shape"])
# Get paddings as either a placeholder or constants.
if parameters["constant_paddings"]:
paddings = parameters["paddings"]
input_tensors = [input_tensor]
else:
shape = [len(parameters["paddings"]), 2]
paddings = tf.compat.v1.placeholder(
dtype=tf.int32, name="padding", shape=shape)
input_tensors = [input_tensor, paddings]
out = tf.pad(
input_tensor,
paddings=paddings,
constant_values=parameters["constant_values"])
return input_tensors, [out]
def build_inputs(parameters, sess, inputs, outputs):
values = [
create_tensor_data(parameters["dtype"], parameters["input_shape"])
]
if not parameters["constant_paddings"]:
values.append(np.array(parameters["paddings"]))
return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)