92 lines
3.1 KiB
Python
92 lines
3.1 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Test configs for padv2."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import tensorflow.compat.v1 as tf
|
|
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
|
|
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
|
|
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
|
|
|
|
|
|
@register_make_test_function()
|
|
def make_padv2_tests(options):
|
|
"""Make a set of tests to do padv2."""
|
|
|
|
# TODO(nupurgarg): Add test for tf.uint8.
|
|
test_parameters = [
|
|
# 4D:
|
|
{
|
|
"dtype": [tf.int32, tf.int64, tf.float32],
|
|
"input_shape": [[1, 1, 2, 1], [2, 1, 1, 1]],
|
|
"paddings": [[[0, 0], [0, 1], [2, 3], [0, 0]],
|
|
[[0, 1], [0, 0], [0, 0], [2, 3]]],
|
|
"constant_paddings": [True, False],
|
|
"constant_values": [0, 2],
|
|
},
|
|
# 2D:
|
|
{
|
|
"dtype": [tf.int32, tf.int64, tf.float32],
|
|
"input_shape": [[1, 2]],
|
|
"paddings": [[[0, 1], [2, 3]]],
|
|
"constant_paddings": [True, False],
|
|
"constant_values": [0, 2],
|
|
},
|
|
# 1D:
|
|
{
|
|
"dtype": [tf.int32],
|
|
"input_shape": [[1]],
|
|
"paddings": [[[0, 1]]],
|
|
"constant_paddings": [False],
|
|
"constant_values": [0, 2],
|
|
},
|
|
]
|
|
|
|
def build_graph(parameters):
|
|
"""Build a pad graph given `parameters`."""
|
|
input_tensor = tf.compat.v1.placeholder(
|
|
dtype=parameters["dtype"],
|
|
name="input",
|
|
shape=parameters["input_shape"])
|
|
|
|
# Get paddings as either a placeholder or constants.
|
|
if parameters["constant_paddings"]:
|
|
paddings = parameters["paddings"]
|
|
input_tensors = [input_tensor]
|
|
else:
|
|
shape = [len(parameters["paddings"]), 2]
|
|
paddings = tf.compat.v1.placeholder(
|
|
dtype=tf.int32, name="padding", shape=shape)
|
|
input_tensors = [input_tensor, paddings]
|
|
|
|
out = tf.pad(
|
|
input_tensor,
|
|
paddings=paddings,
|
|
constant_values=parameters["constant_values"])
|
|
return input_tensors, [out]
|
|
|
|
def build_inputs(parameters, sess, inputs, outputs):
|
|
values = [
|
|
create_tensor_data(parameters["dtype"], parameters["input_shape"])
|
|
]
|
|
if not parameters["constant_paddings"]:
|
|
values.append(np.array(parameters["paddings"]))
|
|
return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
|
|
|
|
make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
|