STT-tensorflow/tensorflow/lite/testing/generate_testspec.h
Karim Nosir 3d42bdcff7 - Update build rules for tflite diff to compile for iOS, and avoid compiling flex delegate for iOS.
- Add new method for GenerateTestSpec to generate testspec from TFLite.

PiperOrigin-RevId: 285884997
Change-Id: I803bd619013f7410bd56283a715e46c8719d4810
2019-12-16 17:29:39 -08:00

75 lines
2.9 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_TESTING_GENERATE_TESTSPEC_H_
#define TENSORFLOW_LITE_TESTING_GENERATE_TESTSPEC_H_
#include <algorithm>
#include <functional>
#include <iostream>
#include <vector>
#include "tensorflow/lite/string_type.h"
namespace tflite {
namespace testing {
// Generate test spec by executing TensorFlow model on random inputs.
// The test spec can be consumed by ParseAndRunTests.
// See test spec format in parse_testdata.h
//
// Inputs:
// stream: mutable iostream that contains the contents of test spec.
// tensorflow_model_path: path to TensorFlow model.
// tflite_model_path: path to tflite_model_path that the test spec runs
// num_invocations: how many pairs of inputs and outputs will be generated.
// against. input_layer: names of input tensors. Example: input1
// input_layer_type: datatypes of input tensors. Example: float
// input_layer_shape: shapes of input tensors, separated by comma. example:
// 1,3,4 output_layer: names of output tensors. Example: output
bool GenerateTestSpecFromTensorflowModel(
std::iostream& stream, const string& tensorflow_model_path,
const string& tflite_model_path, int num_invocations,
const std::vector<string>& input_layer,
const std::vector<string>& input_layer_type,
const std::vector<string>& input_layer_shape,
const std::vector<string>& output_layer);
// Generate test spec by executing TFLite model on random inputs.
bool GenerateTestSpecFromTFLiteModel(
std::iostream& stream, const string& tflite_model_path, int num_invocations,
const std::vector<string>& input_layer,
const std::vector<string>& input_layer_type,
const std::vector<string>& input_layer_shape,
const std::vector<string>& output_layer);
// Generates random values that are filled into the tensor.
template <typename T, typename RandomFunction>
std::vector<T> GenerateRandomTensor(const std::vector<int>& shape,
RandomFunction random_func) {
int64_t num_elements = 1;
for (const int dim : shape) {
num_elements *= dim;
}
std::vector<T> result(num_elements);
std::generate_n(result.data(), num_elements, random_func);
return result;
}
} // namespace testing
} // namespace tflite
#endif // TENSORFLOW_LITE_TESTING_GENERATE_TESTSPEC_H_