STT-tensorflow/tensorflow/lite/delegates/flex/util_test.cc
Jaesung Chung 6574fc4e08 Resource & variant type additions to TFLite schema
PiperOrigin-RevId: 354638976
Change-Id: I104c4de542b68e2660887a4e3ec45631a056dd74
2021-01-29 17:12:52 -08:00

153 lines
5.3 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/flex/util.h"
#include <cstdarg>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "tensorflow/lite/string_type.h"
#include "tensorflow/lite/testing/util.h"
namespace tflite {
namespace flex {
namespace {
using tensorflow::DT_FLOAT;
using tensorflow::DT_INT32;
using tensorflow::Tensor;
using ::testing::ElementsAre;
struct TestContext : public TfLiteContext {
string error;
std::vector<int> new_size;
};
void ReportError(TfLiteContext* context, const char* format, ...) {
TestContext* c = static_cast<TestContext*>(context);
const size_t kBufferSize = 1024;
char temp_buffer[kBufferSize];
va_list args;
va_start(args, format);
vsnprintf(temp_buffer, kBufferSize, format, args);
va_end(args);
c->error = temp_buffer;
}
TfLiteStatus ResizeTensor(TfLiteContext* context, TfLiteTensor* tensor,
TfLiteIntArray* new_size) {
TestContext* c = static_cast<TestContext*>(context);
c->new_size.clear();
for (int i = 0; i < new_size->size; ++i) {
c->new_size.push_back(new_size->data[i]);
}
TfLiteIntArrayFree(new_size);
return kTfLiteOk;
}
TEST(UtilTest, ConvertStatus) {
TestContext context;
context.ReportError = ReportError;
EXPECT_EQ(ConvertStatus(&context, tensorflow::errors::Internal("Some Error")),
kTfLiteError);
EXPECT_EQ(context.error, "Some Error");
context.error.clear();
EXPECT_EQ(ConvertStatus(&context, tensorflow::Status()), kTfLiteOk);
EXPECT_TRUE(context.error.empty());
}
TEST(UtilTest, CopyShapeAndType) {
TestContext context;
context.ReportError = ReportError;
context.ResizeTensor = ResizeTensor;
TfLiteTensor dst;
EXPECT_EQ(CopyShapeAndType(&context, Tensor(), &dst), kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(0));
EXPECT_EQ(dst.type, kTfLiteFloat32);
EXPECT_EQ(CopyShapeAndType(&context, Tensor(DT_FLOAT, {1, 2}), &dst),
kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(1, 2));
EXPECT_EQ(dst.type, kTfLiteFloat32);
EXPECT_EQ(CopyShapeAndType(&context, Tensor(DT_INT32, {1, 2}), &dst),
kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(1, 2));
EXPECT_EQ(dst.type, kTfLiteInt32);
EXPECT_EQ(CopyShapeAndType(&context, Tensor(DT_FLOAT, {1LL << 44, 2}), &dst),
kTfLiteError);
EXPECT_EQ(context.error,
"Dimension value in TensorFlow shape is larger than supported by "
"TF Lite");
EXPECT_EQ(
CopyShapeAndType(&context, Tensor(tensorflow::DT_HALF, {1, 2}), &dst),
kTfLiteOk);
EXPECT_THAT(context.new_size, ElementsAre(1, 2));
EXPECT_EQ(dst.type, kTfLiteFloat16);
}
TEST(UtilTest, TypeConversionsFromTFLite) {
EXPECT_EQ(TF_FLOAT, GetTensorFlowDataType(kTfLiteNoType));
EXPECT_EQ(TF_FLOAT, GetTensorFlowDataType(kTfLiteFloat32));
EXPECT_EQ(TF_HALF, GetTensorFlowDataType(kTfLiteFloat16));
EXPECT_EQ(TF_DOUBLE, GetTensorFlowDataType(kTfLiteFloat64));
EXPECT_EQ(TF_INT16, GetTensorFlowDataType(kTfLiteInt16));
EXPECT_EQ(TF_INT32, GetTensorFlowDataType(kTfLiteInt32));
EXPECT_EQ(TF_UINT8, GetTensorFlowDataType(kTfLiteUInt8));
EXPECT_EQ(TF_INT64, GetTensorFlowDataType(kTfLiteInt64));
EXPECT_EQ(TF_UINT64, GetTensorFlowDataType(kTfLiteUInt64));
EXPECT_EQ(TF_COMPLEX64, GetTensorFlowDataType(kTfLiteComplex64));
EXPECT_EQ(TF_COMPLEX128, GetTensorFlowDataType(kTfLiteComplex128));
EXPECT_EQ(TF_STRING, GetTensorFlowDataType(kTfLiteString));
EXPECT_EQ(TF_BOOL, GetTensorFlowDataType(kTfLiteBool));
EXPECT_EQ(TF_RESOURCE, GetTensorFlowDataType(kTfLiteResource));
EXPECT_EQ(TF_VARIANT, GetTensorFlowDataType(kTfLiteVariant));
}
TEST(UtilTest, TypeConversionsFromTensorFlow) {
EXPECT_EQ(kTfLiteFloat16, GetTensorFlowLiteType(TF_HALF));
EXPECT_EQ(kTfLiteFloat32, GetTensorFlowLiteType(TF_FLOAT));
EXPECT_EQ(kTfLiteFloat64, GetTensorFlowLiteType(TF_DOUBLE));
EXPECT_EQ(kTfLiteInt16, GetTensorFlowLiteType(TF_INT16));
EXPECT_EQ(kTfLiteInt32, GetTensorFlowLiteType(TF_INT32));
EXPECT_EQ(kTfLiteUInt8, GetTensorFlowLiteType(TF_UINT8));
EXPECT_EQ(kTfLiteInt64, GetTensorFlowLiteType(TF_INT64));
EXPECT_EQ(kTfLiteUInt64, GetTensorFlowLiteType(TF_UINT64));
EXPECT_EQ(kTfLiteComplex64, GetTensorFlowLiteType(TF_COMPLEX64));
EXPECT_EQ(kTfLiteComplex128, GetTensorFlowLiteType(TF_COMPLEX128));
EXPECT_EQ(kTfLiteString, GetTensorFlowLiteType(TF_STRING));
EXPECT_EQ(kTfLiteBool, GetTensorFlowLiteType(TF_BOOL));
EXPECT_EQ(kTfLiteResource, GetTensorFlowLiteType(TF_RESOURCE));
EXPECT_EQ(kTfLiteVariant, GetTensorFlowLiteType(TF_VARIANT));
}
} // namespace
} // namespace flex
} // namespace tflite
int main(int argc, char** argv) {
::tflite::LogToStderr();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}