STT-tensorflow/tensorflow/compiler/tf2xla/sharding_util_test.cc
Andy Ly 5b69bbfb41 Update DistributedTPURewritePass to populate OpMetadata in OpSharding.
Arguments and results to a TPU computation will now have OpMetadata containing the source of the sharding attribute (TF op type and name).

PiperOrigin-RevId: 352596417
Change-Id: I75a7114f039b9938ac1479d61ffd37a3ed0f843d
2021-01-19 10:26:20 -08:00

142 lines
4.7 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/tf2xla/sharding_util.h"
#include <functional>
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/platform/test.h"
namespace tensorflow {
TEST(CoreUtilTest, ParseShardingFromDevice) {
Graph graph(OpRegistry::Global());
auto core_from_sharding =
[](absl::optional<xla::OpSharding> sharding) -> int64 {
if (sharding.has_value() &&
sharding.value().type() == xla::OpSharding::MAXIMAL) {
return sharding.value().tile_assignment_devices(0);
} else {
return -1;
}
};
auto parse_status = ParseShardingFromDevice("", 1);
TF_EXPECT_OK(parse_status.status());
EXPECT_EQ(-1, core_from_sharding(parse_status.ValueOrDie()));
parse_status = ParseShardingFromDevice("", 100);
TF_EXPECT_OK(parse_status.status());
EXPECT_EQ(-1, core_from_sharding(parse_status.ValueOrDie()));
parse_status = ParseShardingFromDevice("/device:A_REPLICATED_CORE:-1", 100);
EXPECT_FALSE(parse_status.ok());
parse_status = ParseShardingFromDevice("/device:A_REPLICATED_CORE:55", 100);
TF_EXPECT_OK(parse_status.status());
EXPECT_EQ(55, core_from_sharding(parse_status.ValueOrDie()));
parse_status = ParseShardingFromDevice("/device:A_REPLICATED_CORE:100", 100);
EXPECT_FALSE(parse_status.ok());
parse_status = ParseShardingFromDevice("/cpu:0", 100);
TF_EXPECT_OK(parse_status.status());
EXPECT_EQ(-1, core_from_sharding(parse_status.ValueOrDie()));
}
class ShardingWithMetadataTest
: public ::testing::TestWithParam<xla::OpSharding> {};
TEST_P(ShardingWithMetadataTest, GetShardingFromNode) {
NodeDef node_def;
{
node_def.set_op("_Arg");
node_def.set_name("arg");
AttrValue xla_sharding;
xla_sharding.set_s("");
AttrValue index;
index.set_i(0);
AttrValue type;
type.set_type(DataType::DT_FLOAT);
node_def.mutable_attr()->insert(
{{"_XlaSharding", xla_sharding}, {"index", index}, {"T", type}});
}
auto check_metadata = [](const xla::OpSharding& sharding) {
ASSERT_EQ(sharding.metadata_size(), 1);
const auto& metadata = sharding.metadata(0);
EXPECT_EQ(metadata.op_type(), "_Arg");
EXPECT_EQ(metadata.op_name(), "arg");
};
auto test_sharding_metadata =
[&check_metadata](
const std::function<xla::StatusOr<absl::optional<xla::OpSharding>>()>&
fn) {
auto status_or_sharding = fn();
TF_ASSERT_OK(status_or_sharding.status());
ASSERT_TRUE(status_or_sharding.ValueOrDie().has_value());
auto& sharding = status_or_sharding.ValueOrDie();
ASSERT_TRUE(sharding.has_value());
if (sharding->type() == xla::OpSharding::TUPLE) {
EXPECT_TRUE(sharding->metadata().empty());
for (const auto& sharding_element : sharding->tuple_shardings()) {
check_metadata(sharding_element);
}
} else {
check_metadata(sharding.value());
}
};
{
test_sharding_metadata([&node_def]() {
return GetShardingFromNodeDef(node_def, /*add_metadata=*/true);
});
}
{
test_sharding_metadata([&node_def]() {
return ParseShardingFromDevice(node_def, /*num_cores_per_replica=*/1,
/*add_metadata=*/true);
});
}
{
Graph graph(OpRegistry::Global());
Status status;
Node* node = graph.AddNode(node_def, &status);
TF_ASSERT_OK(status);
test_sharding_metadata([node]() {
return ParseShardingFromDevice(*node, /*num_cores_per_replica=*/1,
/*add_metadata=*/true);
});
}
}
xla::OpSharding CreateTupleSharding() {
xla::OpSharding sharding;
sharding.set_type(xla::OpSharding::TUPLE);
sharding.add_tuple_shardings()->set_type(xla::OpSharding::REPLICATED);
sharding.add_tuple_shardings()->set_type(xla::OpSharding::REPLICATED);
return sharding;
}
INSTANTIATE_TEST_SUITE_P(GetShardingFromNode, ShardingWithMetadataTest,
::testing::Values(xla::sharding_builder::Replicate(),
CreateTupleSharding()));
} // namespace tensorflow