STT-tensorflow/tensorflow/python/saved_model/saved_model_test.py
Cesar Crusius 0bf6bb64ce Remove v1 decorators from saved_model:saved_model_test.
Saved model tests care about building the right graphs, so they were
forced into graph mode (instead of being ported to tf.function
infrastructure). There are differences in the graphs produced between
v1 and v2, but those can be handled easily - for testing purposes -
by carefully choosing operation names based on the mode.

There were unneeded collection operations in a few tests, which were
removed. Other small changes were made but mostly tests were forced to
run in graph mode.

PiperOrigin-RevId: 324289722
Change-Id: Iad60aac85cc3954755a9c6a35cf5a4ddb42640ed
2020-07-31 15:22:49 -07:00

1580 lines
65 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for SavedModel."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import six
from tensorflow.core.framework import types_pb2
from tensorflow.core.protobuf import config_pb2
from tensorflow.core.protobuf import meta_graph_pb2
from tensorflow.python.client import session
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_ops
from tensorflow.python.framework import test_util
from tensorflow.python.lib.io import file_io
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.ops.ragged import ragged_factory_ops
from tensorflow.python.platform import test
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import constants
from tensorflow.python.saved_model import loader
from tensorflow.python.saved_model import loader_impl
from tensorflow.python.saved_model import main_op
from tensorflow.python.saved_model import signature_def_utils
from tensorflow.python.saved_model import tag_constants
from tensorflow.python.saved_model import utils
from tensorflow.python.training import saver_test_utils
from tensorflow.python.training import training
from tensorflow.python.util import compat
SAVED_MODEL_PATH = ("cc/saved_model/testdata/half_plus_two/00000123")
def tearDownModule():
file_io.delete_recursively(test.get_temp_dir())
class SavedModelTestBase(test.TestCase):
def _get_export_dir(self, label):
return os.path.join(test.get_temp_dir(), label)
def _init_and_validate_variable(self, sess, variable_name, variable_value):
v = variables.VariableV1(variable_value, name=variable_name)
self.evaluate(variables.global_variables_initializer())
self.assertEqual(variable_value, self.evaluate(v))
def _build_asset_collection(self, asset_file_name, asset_file_contents,
asset_file_tensor_name, asset_subdir=""):
parent_dir = os.path.join(
compat.as_bytes(test.get_temp_dir()), compat.as_bytes(asset_subdir))
file_io.recursive_create_dir(parent_dir)
asset_filepath = os.path.join(
compat.as_bytes(parent_dir), compat.as_bytes(asset_file_name))
file_io.write_string_to_file(asset_filepath, asset_file_contents)
asset_file_tensor = constant_op.constant(
asset_filepath, name=asset_file_tensor_name)
ops.add_to_collection(ops.GraphKeys.ASSET_FILEPATHS, asset_file_tensor)
asset_collection = ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS)
return asset_collection
def _eval(self, tensor):
"""Evaluate a tensor.
Takes care of the variations between graphs produced with and without
resource variables when determining the name of the operation to run.
Args:
tensor: The tensor to evaluate, or a string with the tensor name.
Returns:
The evaluated tensor as a numpy array.
"""
name = tensor if isinstance(tensor, six.string_types) else tensor.name
index = "0"
if ":" in name:
name, index = name.split(":")
if variable_scope.resource_variables_enabled():
name = name + "/Read/ReadVariableOp"
return self.evaluate(name + ":" + index)
class SavedModelTest(SavedModelTestBase):
def _validate_assets(self,
export_dir,
asset_file_def,
expected_asset_file_name,
expected_asset_file_contents,
expected_asset_tensor_name,
asset_id=0):
assets_path = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY),
compat.as_bytes(expected_asset_file_name))
actual_asset_contents = file_io.read_file_to_string(assets_path)
self.assertEqual(expected_asset_file_contents,
compat.as_text(actual_asset_contents))
self.assertEqual(expected_asset_file_name,
asset_file_def[asset_id].filename)
self.assertEqual(expected_asset_tensor_name,
asset_file_def[asset_id].tensor_info.name)
def _validate_inputs_tensor_info_fail(self, builder, tensor_info):
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
foo_signature = signature_def_utils.build_signature_def({
"foo_inputs": tensor_info
}, dict(), "foo")
self.assertRaises(
AssertionError,
builder.add_meta_graph_and_variables,
sess, ["foo"],
signature_def_map={"foo_key": foo_signature})
def _validate_inputs_tensor_info_accept(self, builder, tensor_info):
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
foo_signature = signature_def_utils.build_signature_def(
{"foo_inputs": tensor_info}, dict(), "foo")
builder.add_meta_graph_and_variables(
sess, ["foo"], signature_def_map={"foo_key": foo_signature})
def _validate_outputs_tensor_info_fail(self, builder, tensor_info):
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
foo_signature = signature_def_utils.build_signature_def(
dict(), {"foo_outputs": tensor_info}, "foo")
self.assertRaises(
AssertionError,
builder.add_meta_graph_and_variables,
sess, ["foo"],
signature_def_map={"foo_key": foo_signature})
def _validate_outputs_tensor_info_accept(self, builder, tensor_info):
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
foo_signature = signature_def_utils.build_signature_def(
dict(), {"foo_outputs": tensor_info}, "foo")
builder.add_meta_graph_and_variables(
sess, ["foo"], signature_def_map={"foo_key": foo_signature})
def _validate_sig_def_keys(self, builder, valid_tensor_info, invalid_key):
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
foo_signature = signature_def_utils.build_signature_def(
dict(), {"foo_key": valid_tensor_info}, "foo")
self.assertRaises(
KeyError,
builder.add_meta_graph_and_variables,
sess, ["foo"],
signature_def_map={invalid_key: foo_signature})
def testMaybeSavedModelDir(self):
base_path = test.test_src_dir_path("/python/saved_model")
self.assertFalse(loader.maybe_saved_model_directory(base_path))
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
self.assertTrue(loader.maybe_saved_model_directory(base_path))
base_path = "complete_garbage"
self.assertFalse(loader.maybe_saved_model_directory(base_path))
def testBadSavedModelFileFormat(self):
export_dir = self._get_export_dir("test_bad_saved_model_file_format")
# Attempt to load a SavedModel from an export directory that does not exist.
with self.session(graph=ops.Graph()) as sess:
with self.assertRaisesRegex(
IOError, "SavedModel file does not exist at: %s" % export_dir):
loader.load(sess, ["foo"], export_dir)
os.makedirs(export_dir)
# Write an invalid binary proto to saved_model.pb.
path_to_pb = os.path.join(export_dir, constants.SAVED_MODEL_FILENAME_PB)
with open(path_to_pb, "w") as f:
f.write("invalid content")
with self.session(graph=ops.Graph()) as sess:
with self.assertRaisesRegex(
IOError, "Cannot parse file.*%s" % constants.SAVED_MODEL_FILENAME_PB):
loader.load(sess, ["foo"], export_dir)
# Cleanup the directory and start again.
file_io.delete_recursively(export_dir)
os.makedirs(export_dir)
# Write an invalid text proto to saved_model.pbtxt
path_to_pbtxt = os.path.join(export_dir,
constants.SAVED_MODEL_FILENAME_PBTXT)
with open(path_to_pbtxt, "w") as f:
f.write("invalid content")
with self.session(graph=ops.Graph()) as sess:
with self.assertRaisesRegex(
IOError,
"Cannot parse file.*%s" % constants.SAVED_MODEL_FILENAME_PBTXT):
loader.load(sess, ["foo"], export_dir)
def testVerifySessionGraphUsage(self):
export_dir = self._get_export_dir("test_verify_session_graph_usage")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(sess, [tag_constants.TRAINING])
# Save the SavedModel to disk.
builder.save()
# Build a session and supply it to the load operation.
sess = session.Session(graph=ops.Graph())
loader.load(sess, [tag_constants.TRAINING], export_dir)
# Check the variable within the scope of the session and its graph.
with sess:
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
def testSequence(self):
export_dir = self._get_export_dir("test_sequence")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Expect an assertion error since add_meta_graph_and_variables() should be
# invoked before any add_meta_graph() calls.
with self.session(graph=ops.Graph()) as sess:
self.assertRaises(AssertionError, builder.add_meta_graph, ["foo"])
# Expect an assertion error for multiple calls of
# add_meta_graph_and_variables() since weights should be saved exactly
# once.
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(sess, ["bar"])
self.assertRaises(AssertionError, builder.add_meta_graph_and_variables,
sess, ["baz"])
def testTags(self):
export_dir = self._get_export_dir("test_tags")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Graph with a single variable. SavedModel invoked to:
# - add with weights.
# - a single tag (from predefined constants).
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(sess, [tag_constants.TRAINING])
# Graph that updates the single variable. SavedModel invoked to:
# - simply add the model (weights are not updated).
# - a single tag (from predefined constants).
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 43)
builder.add_meta_graph([tag_constants.SERVING])
# Graph that updates the single variable. SavedModel invoked to:
# - simply add the model (weights are not updated).
# - multiple tags (from predefined constants).
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 45)
builder.add_meta_graph([tag_constants.SERVING, tag_constants.GPU])
# Graph that updates the single variable. SavedModel invoked to:
# - simply add the model (weights are not updated).
# - multiple tags (from predefined constants for serving on TPU).
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 45)
builder.add_meta_graph([tag_constants.SERVING, tag_constants.TPU])
# Graph that updates the single variable. SavedModel is invoked:
# - to add the model (weights are not updated).
# - multiple custom tags.
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 44)
builder.add_meta_graph(["foo", "bar"])
# Save the SavedModel to disk.
builder.save()
# Restore the graph with a single predefined tag whose variables were
# saved.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, [tag_constants.TRAINING], export_dir)
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
# Restore the graph with a single predefined tag whose variables were not
# saved.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, [tag_constants.SERVING], export_dir)
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
# Restore the graph with multiple predefined tags whose variables were not
# saved.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, [tag_constants.SERVING, tag_constants.GPU],
export_dir)
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
# Restore the graph with multiple predefined tags (for serving on TPU)
# whose variables were not saved.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, [tag_constants.SERVING, tag_constants.TPU],
export_dir)
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
# Restore the graph with multiple tags. Provide duplicate tags to test set
# semantics.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["foo", "bar", "foo"], export_dir)
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
# Try restoring a graph with a non-existent tag. This should yield a
# runtime error.
with self.session(graph=ops.Graph()) as sess:
self.assertRaises(RuntimeError, loader.load, sess, ["INVALID"],
export_dir)
# Try restoring a graph where a subset of the tags match. Since tag
# matching for meta graph defs follows "all" semantics, this should yield
# a runtime error.
with self.session(graph=ops.Graph()) as sess:
self.assertRaises(RuntimeError, loader.load, sess, ["foo", "baz"],
export_dir)
def testVariables(self):
export_dir = self._get_export_dir("test_variables")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Graph with two variables. SavedModel invoked to:
# - add with weights.
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v1", 1)
self._init_and_validate_variable(sess, "v2", 2)
builder.add_meta_graph_and_variables(sess, ["foo"])
# Graph with a single variable (subset of the variables from the previous
# graph whose weights were saved). SavedModel invoked to:
# - simply add the model (weights are not updated).
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v2", 3)
builder.add_meta_graph(["bar"])
# Graph with a single variable (disjoint set of variables from the
# previous graph whose weights were saved). SavedModel invoked to:
# - simply add the model (weights are not updated).
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v3", 4)
builder.add_meta_graph(["baz"])
# Save the SavedModel to disk.
builder.save()
# Restore the graph with tag "foo", whose variables were saved.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["foo"], export_dir)
collection_vars = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)
self.assertEqual(len(collection_vars), 2)
self.assertEqual(1, self._eval(collection_vars[0]))
self.assertEqual(2, self._eval(collection_vars[1]))
# Restore the graph with tag "bar", whose variables were not saved. Only
# the subset of the variables added to the graph will be restored with the
# checkpointed value.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["bar"], export_dir)
collection_vars = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)
self.assertEqual(len(collection_vars), 1)
self.assertEqual(2, self._eval(collection_vars[0]))
# Try restoring the graph with tag "baz", whose variables were not saved.
# Since this graph has a disjoint set of variables from the set that was
# saved, this should raise an error.
with self.session(graph=ops.Graph()) as sess:
self.assertRaises(errors.NotFoundError, loader.load, sess, ["baz"],
export_dir)
def testGraphWithoutVariables(self):
export_dir = self._get_export_dir("test_graph_has_variables")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Graph with no variables.
with self.session(graph=ops.Graph()) as sess:
constant_5_name = constant_op.constant(5.0).name
builder.add_meta_graph_and_variables(sess, ["foo"])
# Second graph with no variables
with self.session(graph=ops.Graph()) as sess:
constant_6_name = constant_op.constant(6.0).name
builder.add_meta_graph(["bar"])
# Save the SavedModel to disk.
builder.save()
# Restore the graph with tag "foo".
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["foo"], export_dir)
# Read the constant a from the graph.
a = ops.get_default_graph().get_tensor_by_name(constant_5_name)
b = constant_op.constant(6.0)
c = a * b
self.assertEqual(30.0, self.evaluate(c))
# Restore the graph with tag "bar".
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["bar"], export_dir)
# Read the constant a from the graph.
a = ops.get_default_graph().get_tensor_by_name(constant_6_name)
b = constant_op.constant(5.0)
c = a * b
self.assertEqual(30.0, self.evaluate(c))
def testNoOverwrite(self):
export_dir = self._get_export_dir("test_no_overwrite")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Graph with a single variable. SavedModel invoked to:
# - add with weights.
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(sess, ["foo"])
# Save the SavedModel to disk in text format.
builder.save(as_text=True)
# Restore the graph with tag "foo", whose variables were saved.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["foo"], export_dir)
self.assertEqual(42, self._eval("v"))
# An attempt to create another builder with the same export directory
# should result in an assertion error.
self.assertRaises(AssertionError, saved_model_builder._SavedModelBuilder,
export_dir)
def testSaveAsText(self):
export_dir = self._get_export_dir("test_astext")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Graph with a single variable. SavedModel invoked to:
# - add with weights.
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(sess, ["foo"])
# Graph with the same single variable. SavedModel invoked to:
# - simply add the model (weights are not updated).
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 43)
builder.add_meta_graph(["bar"])
# Save the SavedModel to disk in text format.
builder.save(as_text=True)
# Restore the graph with tag "foo", whose variables were saved.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["foo"], export_dir)
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
# Restore the graph with tag "bar", whose variables were not saved.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["bar"], export_dir)
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
def testCollections(self):
export_dir = self._get_export_dir("test_collections")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Graph with a single variable added to a collection. SavedModel invoked
# to:
# - add with weights.
with self.session(graph=ops.Graph()) as sess:
v = variables.VariableV1(42, name="v")
ops.add_to_collection("foo_vars", v)
self.evaluate(variables.global_variables_initializer())
self.assertEqual(42, self.evaluate(v))
builder.add_meta_graph_and_variables(sess, ["foo"])
# Graph with the same single variable added to a different collection.
# SavedModel invoked to:
# - simply add the model (weights are not updated).
with self.session(graph=ops.Graph()) as sess:
v = variables.VariableV1(43, name="v")
ops.add_to_collection("bar_vars", v)
self.evaluate(variables.global_variables_initializer())
self.assertEqual(43, self.evaluate(v))
builder.add_meta_graph(["bar"])
# Save the SavedModel to disk.
builder.save()
# Restore the graph with tag "foo", whose variables were saved. The
# collection 'foo_vars' should contain a single element. The collection
# 'bar_vars' should not be found.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["foo"], export_dir)
collection_foo_vars = ops.get_collection("foo_vars")
self.assertEqual(len(collection_foo_vars), 1)
self.assertEqual(42, self._eval(collection_foo_vars[0]))
self.assertEqual(len(ops.get_collection("bar_vars")), 0)
# Restore the graph with tag "bar", whose variables were not saved. The
# collection-def exported as part of the meta graph def is updated to
# reflect the new collection. The value of the variable in the
# collection-def corresponds to the saved value (from the previous graph
# with tag "foo").
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["bar"], export_dir)
collection_bar_vars = ops.get_collection("bar_vars")
self.assertEqual(len(collection_bar_vars), 1)
self.assertEqual(42, self._eval(collection_bar_vars[0]))
self.assertEqual(len(ops.get_collection("foo_vars")), 0)
def testSignatureDefs(self):
export_dir = self._get_export_dir("test_signature_defs")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Graph with a single variable and a single entry in the signature def
# map. SavedModel is invoked to add with weights.
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
# Build and populate an empty SignatureDef for testing.
foo_signature = signature_def_utils.build_signature_def(
dict(), dict(), "foo")
builder.add_meta_graph_and_variables(
sess, ["foo"], signature_def_map={"foo_key": foo_signature})
# Graph with the same single variable and multiple entries in the
# signature def map. No weights are saved by SavedModel.
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 43)
# Build and populate a different SignatureDef for testing.
bar_signature = signature_def_utils.build_signature_def(
dict(), dict(), "bar")
# Also, build a different SignatureDef corresponding to "foo_key"
# defined in the previous graph.
foo_new_signature = signature_def_utils.build_signature_def(
dict(), dict(), "foo_new")
builder.add_meta_graph(["bar"],
signature_def_map={
"bar_key": bar_signature,
"foo_key": foo_new_signature
})
# Save the SavedModel to disk.
builder.save()
# Restore the graph with tag "foo". The single entry in the SignatureDef
# map corresponding to "foo_key" should exist.
with self.session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
foo_signature = foo_graph.signature_def
self.assertEqual(len(foo_signature), 1)
self.assertEqual("foo", foo_signature["foo_key"].method_name)
# Restore the graph with tag "bar". The SignatureDef map should have two
# entries. One corresponding to "bar_key" and another corresponding to the
# new value of "foo_key".
with self.session(graph=ops.Graph()) as sess:
bar_graph = loader.load(sess, ["bar"], export_dir)
self.assertEqual(
42,
self._eval(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0]))
bar_signature = bar_graph.signature_def
self.assertEqual(len(bar_signature), 2)
self.assertEqual("bar", bar_signature["bar_key"].method_name)
self.assertEqual("foo_new", bar_signature["foo_key"].method_name)
def testSignatureDefValidationFails(self):
export_dir = self._get_export_dir("test_signature_def_validation_fail")
builder = saved_model_builder._SavedModelBuilder(export_dir)
tensor_without_encoding = meta_graph_pb2.TensorInfo()
tensor_without_encoding.dtype = types_pb2.DT_FLOAT
self._validate_inputs_tensor_info_fail(builder, tensor_without_encoding)
self._validate_outputs_tensor_info_fail(builder, tensor_without_encoding)
tensor_without_dtype = meta_graph_pb2.TensorInfo()
tensor_without_dtype.name = "x"
self._validate_inputs_tensor_info_fail(builder, tensor_without_dtype)
self._validate_outputs_tensor_info_fail(builder, tensor_without_dtype)
tensor_empty = meta_graph_pb2.TensorInfo()
self._validate_inputs_tensor_info_fail(builder, tensor_empty)
self._validate_outputs_tensor_info_fail(builder, tensor_empty)
valid_tensor_info = meta_graph_pb2.TensorInfo()
valid_tensor_info.name = "foo"
valid_tensor_info.dtype = types_pb2.DT_FLOAT
self._validate_sig_def_keys(builder, valid_tensor_info,
constants.INIT_OP_SIGNATURE_KEY)
self._validate_sig_def_keys(builder, valid_tensor_info,
constants.TRAIN_OP_SIGNATURE_KEY)
def testSignatureDefValidationSucceedsWithName(self):
tensor_with_name = meta_graph_pb2.TensorInfo()
tensor_with_name.name = "foo"
tensor_with_name.dtype = types_pb2.DT_FLOAT
with ops.Graph().as_default():
export_dir = self._get_export_dir("test_signature_def_validation_name_1")
builder = saved_model_builder._SavedModelBuilder(export_dir)
self._validate_inputs_tensor_info_accept(builder, tensor_with_name)
export_dir = self._get_export_dir("test_signature_def_validation_name_2")
builder = saved_model_builder._SavedModelBuilder(export_dir)
self._validate_outputs_tensor_info_accept(builder, tensor_with_name)
def testSignatureDefValidationSucceedsWithCoo(self):
with ops.Graph().as_default():
tensor_with_coo = meta_graph_pb2.TensorInfo()
# TODO(soergel) test validation of each of the fields of coo_sparse
tensor_with_coo.coo_sparse.values_tensor_name = "foo"
tensor_with_coo.dtype = types_pb2.DT_FLOAT
export_dir = self._get_export_dir("test_signature_def_validation_coo_1")
builder = saved_model_builder._SavedModelBuilder(export_dir)
self._validate_inputs_tensor_info_accept(builder, tensor_with_coo)
export_dir = self._get_export_dir("test_signature_def_validation_coo_2")
builder = saved_model_builder._SavedModelBuilder(export_dir)
self._validate_outputs_tensor_info_accept(builder, tensor_with_coo)
def testSignatureDefValidationSucceedsWithRagged(self):
with ops.Graph().as_default():
ragged_tensor = ragged_factory_ops.constant([[1, 2], [3]])
tensor_with_ragged = utils.build_tensor_info(ragged_tensor)
export_dir = self._get_export_dir(
"test_signature_def_validation_ragged_1")
builder = saved_model_builder._SavedModelBuilder(export_dir)
self._validate_inputs_tensor_info_accept(builder, tensor_with_ragged)
export_dir = self._get_export_dir(
"test_signature_def_validation_ragged_2")
builder = saved_model_builder._SavedModelBuilder(export_dir)
self._validate_outputs_tensor_info_accept(builder, tensor_with_ragged)
def testAssets(self):
export_dir = self._get_export_dir("test_assets")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
# Build an asset collection.
ignored_filepath = os.path.join(
compat.as_bytes(test.get_temp_dir()),
compat.as_bytes("ignored.txt"))
file_io.write_string_to_file(ignored_filepath, "will be ignored")
asset_list = self._build_asset_collection("hello42.txt", "foo bar baz",
"asset_file_tensor")
builder.add_meta_graph_and_variables(
sess, ["foo"], assets_list=asset_list)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
self._validate_assets(export_dir, foo_graph.asset_file_def,
"hello42.txt", "foo bar baz",
"asset_file_tensor:0")
ignored_asset_path = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY),
compat.as_bytes("ignored.txt"))
self.assertFalse(file_io.file_exists(ignored_asset_path))
def testAssetsNameCollisionDiffFile(self):
export_dir = self._get_export_dir("test_assets_name_collision_diff_file")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
asset_list = self._build_asset_collection(
"hello42.txt", "foo bar bak", "asset_file_tensor", asset_subdir="1")
asset_list = self._build_asset_collection(
"hello42.txt",
"foo bar baz",
"asset_file_tensor_1",
asset_subdir="2")
builder.add_meta_graph_and_variables(
sess, ["foo"], assets_list=asset_list)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
self._validate_assets(export_dir, foo_graph.asset_file_def,
"hello42.txt", "foo bar bak",
"asset_file_tensor:0")
self._validate_assets(
export_dir,
foo_graph.asset_file_def,
"hello42.txt_1",
"foo bar baz",
"asset_file_tensor_1:0",
asset_id=1)
def testAssetsNameCollisionSameFilepath(self):
export_dir = self._get_export_dir("test_assets_name_collision_same_path")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
asset_list = self._build_asset_collection("hello42.txt", "foo bar baz",
"asset_file_tensor")
asset_list = self._build_asset_collection("hello42.txt", "foo bar baz",
"asset_file_tensor_1")
builder.add_meta_graph_and_variables(
sess, ["foo"], assets_list=asset_list)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
self._validate_assets(export_dir, foo_graph.asset_file_def,
"hello42.txt", "foo bar baz",
"asset_file_tensor:0")
# The second tensor should be recorded, but the same.
self._validate_assets(
export_dir,
foo_graph.asset_file_def,
"hello42.txt",
"foo bar baz",
"asset_file_tensor_1:0",
asset_id=1)
ignored_asset_path = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY),
compat.as_bytes("hello42.txt_1"))
self.assertFalse(file_io.file_exists(ignored_asset_path))
def testAssetsNameCollisionSameFile(self):
export_dir = self._get_export_dir("test_assets_name_collision_same_file")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
asset_list = self._build_asset_collection(
"hello42.txt", "foo bar baz", "asset_file_tensor", asset_subdir="1")
asset_list = self._build_asset_collection(
"hello42.txt",
"foo bar baz",
"asset_file_tensor_1",
asset_subdir="2")
builder.add_meta_graph_and_variables(
sess, ["foo"], assets_list=asset_list)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
self._validate_assets(export_dir, foo_graph.asset_file_def,
"hello42.txt", "foo bar baz",
"asset_file_tensor:0")
# The second tensor should be recorded, but the same.
self._validate_assets(
export_dir,
foo_graph.asset_file_def,
"hello42.txt",
"foo bar baz",
"asset_file_tensor_1:0",
asset_id=1)
ignored_asset_path = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY),
compat.as_bytes("hello42.txt_1"))
self.assertFalse(file_io.file_exists(ignored_asset_path))
def testAssetsNameCollisionManyFiles(self):
export_dir = self._get_export_dir("test_assets_name_collision_many_files")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
for i in range(5):
idx = str(i)
asset_list = self._build_asset_collection(
"hello42.txt",
"foo bar baz " + idx,
"asset_file_tensor_" + idx,
asset_subdir=idx)
builder.add_meta_graph_and_variables(
sess, ["foo"], assets_list=asset_list)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
for i in range(1, 5):
idx = str(i)
self._validate_assets(
export_dir,
foo_graph.asset_file_def,
"hello42.txt_" + idx,
"foo bar baz " + idx,
"asset_file_tensor_{}:0".format(idx),
asset_id=i)
self._validate_assets(export_dir, foo_graph.asset_file_def,
"hello42.txt", "foo bar baz 0",
"asset_file_tensor_0:0")
def testCustomInitOp(self):
export_dir = self._get_export_dir("test_main_op")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
# Add `v1` and `v2` variables to the graph.
v1 = variables.VariableV1(1, name="v1")
v2 = variables.VariableV1(2, name="v2")
# Initialize another variable `v3` to 42.
v3 = variables.VariableV1(42, name="v3")
# Set up an assignment op to be run as part of the main_op.
with ops.control_dependencies([main_op.main_op()]):
add_v1_v2 = math_ops.add(v1, v2)
custom_init_op = control_flow_ops.group(
state_ops.assign(v3, add_v1_v2))
self.evaluate(variables.global_variables_initializer())
self.evaluate(custom_init_op)
builder.add_meta_graph_and_variables(
sess, ["foo"], init_op=custom_init_op)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["foo"], export_dir)
self.assertEqual(1, self._eval("v1"))
self.assertEqual(2, self._eval("v2"))
# Evaluates to the sum of the first two variables and assigned as part
# of the main_op, following a restore.
self.assertEqual(3, self._eval("v3"))
def testTrainOp(self):
export_dir = self._get_export_dir("test_train_op")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
# Add `v1` and `v2` variables to the graph.
v1 = variables.VariableV1(1, name="v1")
v2 = variables.VariableV1(2, name="v2")
self.evaluate(variables.global_variables_initializer())
train_op = state_ops.assign_add(v1, v2)
self.evaluate(train_op)
builder.add_meta_graph_and_variables(sess, ["foo"], train_op=train_op)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
meta_graph_def = loader.load(sess, ["foo"], export_dir)
self.assertEqual(3, self._eval("v1"))
self.assertEqual(2, self._eval("v2"))
if variable_scope.resource_variables_enabled():
self.assertEqual(
loader_impl.get_train_op(meta_graph_def).type,
"AssignAddVariableOp")
else:
self.assertIsInstance(
loader_impl.get_train_op(meta_graph_def), ops.Tensor)
def testTrainOpGroup(self):
export_dir = self._get_export_dir("test_train_op_group")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
# Add `v1` and `v2` variables to the graph.
variables.VariableV1(1, name="v1")
variables.VariableV1(2, name="v2")
self.evaluate(variables.global_variables_initializer())
train_op = control_flow_ops.group()
self.evaluate(train_op)
builder.add_meta_graph_and_variables(sess, ["foo"], train_op=train_op)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
meta_graph_def = loader.load(sess, ["foo"], export_dir)
self.assertEqual(1, self._eval("v1"))
self.assertEqual(2, self._eval("v2"))
self.assertIsInstance(
loader_impl.get_train_op(meta_graph_def), ops.Operation)
def testTrainOpAfterVariables(self):
export_dir = self._get_export_dir("test_train_op_after_variables")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
# Add `v1` and `v2` variables to the graph.
v1 = variables.VariableV1(1, name="v1")
v2 = variables.VariableV1(2, name="v2")
self.evaluate(variables.global_variables_initializer())
builder.add_meta_graph_and_variables(sess, ["pre_foo"])
train_op = state_ops.assign_add(v1, v2)
self.evaluate(train_op)
builder.add_meta_graph(["foo"], train_op=train_op)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
meta_graph_def = loader.load(sess, ["foo"], export_dir)
if variable_scope.resource_variables_enabled():
self.assertEqual(
loader_impl.get_train_op(meta_graph_def).type,
"AssignAddVariableOp")
else:
self.assertIsInstance(
loader_impl.get_train_op(meta_graph_def), ops.Tensor)
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["pre_foo"], export_dir)
self.assertFalse(ops.get_collection(constants.TRAIN_OP_KEY))
def testMultipleAssets(self):
export_dir = self._get_export_dir("test_multiple_assets")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
# Build an asset collection specific to `foo` graph.
asset_list = self._build_asset_collection("foo.txt", "content_foo",
"asset_file_tensor")
# Add the asset collection as part of the graph with tag "foo".
builder.add_meta_graph_and_variables(
sess, ["foo"], assets_list=asset_list)
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
# Build an asset collection specific to `bar` graph.
asset_list = self._build_asset_collection("bar.txt", "content_bar",
"asset_file_tensor")
# Add the asset collection as part of the graph with tag "bar".
builder.add_meta_graph(["bar"], assets_list=asset_list)
# Save the SavedModel to disk.
builder.save()
# Check assets restored for graph with tag "foo".
with self.session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
self._validate_assets(export_dir, foo_graph.asset_file_def, "foo.txt",
"content_foo", "asset_file_tensor:0")
# Check assets restored for graph with tag "bar".
with self.session(graph=ops.Graph()) as sess:
bar_graph = loader.load(sess, ["bar"], export_dir)
self._validate_assets(export_dir, bar_graph.asset_file_def, "bar.txt",
"content_bar", "asset_file_tensor:0")
def testDuplicateAssets(self):
export_dir = self._get_export_dir("test_duplicate_assets")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
# Build an asset collection with `foo.txt` that has `foo` specific
# content.
asset_list = self._build_asset_collection("foo.txt", "content_foo",
"asset_file_tensor")
# Add the asset collection as part of the graph with tag "foo".
builder.add_meta_graph_and_variables(
sess, ["foo"], assets_list=asset_list)
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
# Build an asset collection with `foo.txt` that has `bar` specific
# content.
asset_list = self._build_asset_collection("foo.txt", "content_bar",
"asset_file_tensor")
# Add the asset collection as part of the graph with tag "bar".
builder.add_meta_graph(["bar"], assets_list=asset_list)
# Save the SavedModel to disk.
builder.save()
# Check assets restored for graph with tag "foo".
with self.session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
self._validate_assets(export_dir, foo_graph.asset_file_def, "foo.txt",
"content_foo", "asset_file_tensor:0")
# Check assets restored for graph with tag "bar".
with self.session(graph=ops.Graph()) as sess:
bar_graph = loader.load(sess, ["bar"], export_dir)
# Validate the assets for `bar` graph. `foo.txt` should contain the
# original contents corresponding to `foo` graph since an asset with the
# same name across multiple graphs is only stored the first time
self._validate_assets(export_dir, bar_graph.asset_file_def, "foo.txt",
"content_foo", "asset_file_tensor:0")
def testOp(self):
export_dir = self._get_export_dir("test_op")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with session.Session(
graph=ops.Graph(),
config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
v1 = variables.VariableV1(1, name="v1")
with sess.graph.device("/cpu:1"):
v2 = variables.VariableV1(2, name="v2")
# v3 is an unsaved variable derived from v1 and v2. It is used to
# exercise the ability to run an init op when restoring a graph.
v3 = variables.VariableV1(1, name="v3", trainable=False, collections=[])
assign_v3 = state_ops.assign(v3, math_ops.add(v1, v2))
control_flow_ops.group(assign_v3, name="init_op")
self.evaluate(variables.global_variables_initializer())
self.assertEqual(1, self._eval("v1"))
self.assertEqual(2, self._eval("v2"))
builder.add_meta_graph_and_variables(sess, ["foo"])
# Save the SavedModel to disk.
builder.save()
with session.Session(
graph=ops.Graph(),
config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess:
loader.load(sess, ["foo"], export_dir)
# Validate variables, run the init op and verify result.
self.assertEqual(1, self._eval("v1"))
self.assertEqual(2, self._eval("v2"))
sess.run("init_op")
self.assertEqual(3, self._eval("v3"))
def testCustomSaveable(self):
export_dir = self._get_export_dir("custom_saveable")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with session.Session(
graph=ops.Graph(),
config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess:
# CheckpointedOp is a key-value table that can be saved across sessions.
# The table register itself in SAVEABLE_OBJECTS collection.
v1 = saver_test_utils.CheckpointedOp(name="v1")
self.evaluate(variables.global_variables_initializer())
v1.insert("k1", 3.0).run()
# Once the table is restored, we can access it through this reference.
ops.add_to_collection("table_ref", v1.table_ref)
builder.add_meta_graph_and_variables(sess, ["foo"])
# Save the SavedModel to disk.
builder.save()
with session.Session(
graph=ops.Graph(),
config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess:
loader.load(sess, ["foo"], export_dir)
# Instantiate a wrapper object from the checkpointed reference.
v1 = saver_test_utils.CheckpointedOp(
name="v1", table_ref=ops.get_collection("table_ref")[0])
self.assertEqual(b"k1", v1.keys().eval())
self.assertEqual(3.0, v1.values().eval())
def testCustomSaver(self):
export_dir = self._get_export_dir("test_custom_saver")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default() as graph:
with self.session(graph=ops.Graph()) as sess:
variables.VariableV1(1, name="v1")
self.evaluate(variables.global_variables_initializer())
custom_saver = training.Saver(name="my_saver")
builder.add_meta_graph_and_variables(sess, ["tag"], saver=custom_saver)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=graph) as sess:
saved_graph = loader.load(sess, ["tag"], export_dir)
graph_ops = [x.name for x in graph.get_operations()]
self.assertTrue("my_saver/restore_all" in graph_ops)
self.assertFalse("save/restore_all" in graph_ops)
self.assertEqual(
saved_graph.saver_def.restore_op_name, "my_saver/restore_all")
def testNoCustomSaver(self):
export_dir = self._get_export_dir("test_no_custom_saver")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default() as graph:
with self.session(graph=ops.Graph()) as sess:
variables.VariableV1(1, name="v1")
self.evaluate(variables.global_variables_initializer())
training.Saver(name="my_saver")
builder.add_meta_graph_and_variables(sess, ["tag"])
# Save the SavedModel to disk.
builder.save()
with self.session(graph=graph) as sess:
saved_graph = loader.load(sess, ["tag"], export_dir)
graph_ops = [x.name for x in graph.get_operations()]
self.assertTrue("my_saver/restore_all" in graph_ops)
self.assertTrue("save/restore_all" in graph_ops)
self.assertEqual(
saved_graph.saver_def.restore_op_name, "save/restore_all")
def testMultipleCustomSavers(self):
export_dir = self._get_export_dir("test_multiple_custom_savers")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
variables.VariableV1(1, name="v1")
self.evaluate(variables.global_variables_initializer())
builder.add_meta_graph_and_variables(sess, ["tag_0"])
saver_1 = training.Saver()
builder.add_meta_graph(["tag_1"], saver=saver_1)
saver_2 = training.Saver()
builder.add_meta_graph(["tag_2"], saver=saver_2)
# Save the SavedModel to disk.
builder.save()
def _validate_custom_saver(tag_name, saver_name):
with ops.Graph().as_default() as graph:
with self.session(graph=graph) as sess:
saved_graph = loader.load(sess, [tag_name], export_dir)
self.assertEqual(
saved_graph.saver_def.restore_op_name,
saver_name)
_validate_custom_saver("tag_0", "save/restore_all")
_validate_custom_saver("tag_1", "save_1/restore_all")
_validate_custom_saver("tag_2", "save_2/restore_all")
def testImportScope(self):
export_dir = self._get_export_dir("test_scoped_assets")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Build a SavedModel with a variable, an asset, and a constant tensor.
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
asset_list = self._build_asset_collection("foo.txt", "content_foo",
"asset_file_tensor")
constant_op.constant("constant value", name="constant_tensor_name")
builder.add_meta_graph_and_variables(
sess, ["tag_name"], assets_list=asset_list)
# Save the asset file path for later comparison.
asset_file_path = asset_list[0].eval()
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
# Restore the SavedModel under an import_scope in a new graph/session.
graph_proto = loader.load(
sess, ["tag_name"], export_dir, import_scope="scope_name")
# The loaded variable tensor should be scoped, but its contents should
# be unchanged.
self.assertEqual(
"scope_name/v:0",
ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].name)
self.assertEqual(42, self._eval("scope_name/v"))
# The loaded asset tensor should be scoped, but the asset file path and
# contents should be unchanged.
asset_list = ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS)
self.assertEqual(1, len(asset_list))
self.assertEqual(asset_file_path, asset_list[0].eval())
self.assertEqual("scope_name/asset_file_tensor:0", asset_list[0].name)
# The static asset data inside graph_proto.collection_def should not be
# scoped.
self._validate_assets(export_dir, graph_proto.asset_file_def, "foo.txt",
"content_foo", "asset_file_tensor:0")
# The constant tensor should be scoped, but its contents should be
# unchanged.
self.assertEqual(
compat.as_bytes("constant value"),
ops.get_default_graph().get_tensor_by_name(
"scope_name/constant_tensor_name:0").eval())
def testClearDevices(self):
export_dir = self._get_export_dir("test_clear_devices")
builder = saved_model_builder._SavedModelBuilder(export_dir)
with ops.Graph().as_default():
# Specify a device and save a variable.
with session.Session(
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(
sess, [tag_constants.TRAINING], clear_devices=True)
# Save the SavedModel to disk.
builder.save()
# Restore the graph with a single predefined tag whose variables were
# saved without any device information.
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, [tag_constants.TRAINING], export_dir)
self.assertEqual(42, self._eval("v"))
# Tests the behavior of loading SavedModels that having missing attrs or attrs
# with incorrect types.
def testInconsistentConsumerDefaultAttrs(self):
export_dir = self._get_export_dir(
"test_strip_default_attrs_no_consumer_defaults")
builder = saved_model_builder._SavedModelBuilder(export_dir)
# Add a graph with a single variable and a test op with a defaultless
# float32 attr, "test_attr".
with session.Session(graph=ops.Graph()) as sess:
variables.VariableV1(1.0, dtype=dtypes.float64, name="var")
test_ops.test_attr(T=dtypes.float32, name="test_attr")
self.evaluate(variables.global_variables_initializer())
builder.add_meta_graph_and_variables(sess, ["foo"])
# Save the SavedModel to disk in text format.
builder.save(as_text=True)
# Rewrite the SavedModel to remove the T attr from "test_attr".
saved_model_file = os.path.join(
export_dir, constants.SAVED_MODEL_FILENAME_PBTXT)
with open(saved_model_file) as f:
original_saved_model = f.read()
no_attr_saved_model = original_saved_model.replace("""
attr {
key: "T"
value {
type: DT_FLOAT
}
}""", "")
with open(saved_model_file, "w") as f:
f.write(no_attr_saved_model)
# Loading the SavedModel via the loader must fail because the SavedModel
# does not have any attr values for the "TestAttr" node, and there is no
# default specified in the TestAttr OpDef.
sess = session.Session(graph=ops.Graph())
with self.assertRaisesRegex(
ValueError, "NodeDef missing attr 'T' from Op<name=TestAttr"):
loader.load(sess, ["foo"], export_dir)
# Rewrite the SavedModel to change the type of the T attr in "test_attr"
bad_type_saved_model = original_saved_model.replace("""
attr {
key: "T"
value {
type: DT_FLOAT
}
}""", """
attr {
key: "T"
value {
type: DT_DOUBLE
}
}""")
with open(saved_model_file, "w") as f:
f.write(bad_type_saved_model)
# Loading the SavedModel via the loader must fail because there is no
# OpKernel registered to handle T = double.
sess = session.Session(graph=ops.Graph())
with self.assertRaisesRegex(errors.InvalidArgumentError,
"No OpKernel was registered.*DOUBLE"):
loader.load(sess, ["foo"], export_dir)
class SavedModelV1Test(SavedModelTestBase):
def _validate_asset_collection(self,
export_dir,
graph_collection_def,
expected_asset_file_name,
expected_asset_file_contents,
expected_asset_tensor_name,
asset_id=0):
assets_any = graph_collection_def[constants.ASSETS_KEY].any_list.value
asset = meta_graph_pb2.AssetFileDef()
assets_any[asset_id].Unpack(asset)
assets_path = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY),
compat.as_bytes(expected_asset_file_name))
actual_asset_contents = file_io.read_file_to_string(assets_path)
self.assertEqual(expected_asset_file_contents,
compat.as_text(actual_asset_contents))
self.assertEqual(expected_asset_file_name, asset.filename)
self.assertEqual(expected_asset_tensor_name, asset.tensor_info.name)
def testWritingAssetsToCollection(self):
export_dir = self._get_export_dir("test_writing_assets_to_collection")
builder = saved_model_builder.SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
self._init_and_validate_variable(sess, "v", 42)
# Build an asset list.
ignored_filepath = os.path.join(
compat.as_bytes(test.get_temp_dir()),
compat.as_bytes("ignored.txt"))
file_io.write_string_to_file(ignored_filepath, "will be ignored")
asset_collection = self._build_asset_collection("hello42.txt",
"foo bar baz",
"asset_file_tensor")
builder.add_meta_graph_and_variables(
sess, ["foo"], assets_collection=asset_collection)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
foo_graph = loader.load(sess, ["foo"], export_dir)
self._validate_asset_collection(export_dir, foo_graph.collection_def,
"hello42.txt", "foo bar baz",
"asset_file_tensor:0")
ignored_asset_path = os.path.join(
compat.as_bytes(export_dir),
compat.as_bytes(constants.ASSETS_DIRECTORY),
compat.as_bytes("ignored.txt"))
self.assertFalse(file_io.file_exists(ignored_asset_path))
def testLegacyInitOpWithNonEmptyCollection(self):
export_dir = self._get_export_dir(
"test_legacy_init_op_with_non_empty_collection")
self._testInitOpsWithNonEmptyCollection(export_dir,
constants.LEGACY_INIT_OP_KEY)
def testMainOpWithNonEmptyCollection(self):
export_dir = self._get_export_dir("test_main_op_with_non_empty_collection")
self._testInitOpsWithNonEmptyCollection(export_dir, constants.MAIN_OP_KEY)
def _testInitOpsWithNonEmptyCollection(self, export_dir, key):
builder = saved_model_builder.SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session() as sess:
# Initialize variable `v1` to 1.
v1 = variables.VariableV1(1, name="v1")
ops.add_to_collection("v", v1)
# Initialize another variable `v2` to 42.
v2 = variables.VariableV1(
42, name="v2", trainable=False, collections=[])
ops.add_to_collection("v", v2)
# Set up an assignment op to be run as part of the init op.
assign_v2 = state_ops.assign(v2, v1)
init_op = control_flow_ops.group(assign_v2, name="init_op")
self.evaluate(variables.global_variables_initializer())
ops.add_to_collection(key, control_flow_ops.no_op())
# ValueError should be raised since the LEGACY_INIT_OP_KEY collection
# is not empty and we don't support multiple init ops.
with self.assertRaisesRegex(ValueError, "Graph already contains"):
builder.add_meta_graph_and_variables(
sess, ["foo"], legacy_init_op=init_op)
# We shouldn't be able to add as MAIN_OP, either.
with self.assertRaisesRegex(ValueError, "Graph already contains"):
builder.add_meta_graph_and_variables(sess, ["foo"], main_op=init_op)
def testStripDefaultAttrs(self):
export_dir = self._get_export_dir("test_strip_default_attrs")
builder = saved_model_builder.SavedModelBuilder(export_dir)
# Add a graph with two float32 variables and a Complex Op composing them
# with strip_default_attrs enabled.
with session.Session(graph=ops.Graph()) as sess:
real_num = variables.VariableV1(1.0, dtype=dtypes.float32, name="real")
imag_num = variables.VariableV1(2.0, dtype=dtypes.float32, name="imag")
math_ops.complex(real_num, imag_num, name="complex")
self.evaluate(variables.global_variables_initializer())
builder.add_meta_graph_and_variables(
sess, ["foo"], strip_default_attrs=True)
# Add a graph with the same float32 variables and a Complex Op composing
# them with strip_default_attrs disabled.
with session.Session(graph=ops.Graph()) as sess:
real_num = variables.VariableV1(1.0, dtype=dtypes.float32, name="real")
imag_num = variables.VariableV1(2.0, dtype=dtypes.float32, name="imag")
math_ops.complex(real_num, imag_num, name="complex")
self.evaluate(variables.global_variables_initializer())
builder.add_meta_graph(["bar"], strip_default_attrs=False)
# Save the SavedModel to disk in text format.
builder.save(as_text=True)
# Loading graph "foo" via the loader must restore the defaults for the
# "Complex" node based on the "Complex" OpDef in the Op registry.
sess = session.Session(graph=ops.Graph())
meta_graph_def = loader.load(sess, ["foo"], export_dir)
complex_node = test_util.get_node_def_from_graph("complex",
meta_graph_def.graph_def)
self.assertIn("T", complex_node.attr)
self.assertIn("Tout", complex_node.attr)
# Load graph "foo" from disk as-is to verify default attrs are stripped.
saved_model_pb = loader_impl.parse_saved_model(export_dir)
self.assertIsNotNone(saved_model_pb)
meta_graph_foo_def = None
meta_graph_bar_def = None
for meta_graph_def in saved_model_pb.meta_graphs:
if set(meta_graph_def.meta_info_def.tags) == set(["foo"]):
meta_graph_foo_def = meta_graph_def
elif set(meta_graph_def.meta_info_def.tags) == set(["bar"]):
meta_graph_bar_def = meta_graph_def
self.assertIsNotNone(meta_graph_foo_def)
self.assertIsNotNone(meta_graph_bar_def)
# "Complex" Op has 2 attributes with defaults:
# o "T" : float32. (input type)
# o "Tout" : complex64. (output type)
# "Complex" Op in graph "foo" shouldn't have attributes "T" and "Tout".
# Graph "foo" was saved with strip_default_attrs set to True.
node_def = test_util.get_node_def_from_graph("complex",
meta_graph_foo_def.graph_def)
self.assertNotIn("T", node_def.attr)
self.assertNotIn("Tout", node_def.attr)
# "Complex" Op in graph "bar" must have attributes "T" and "Tout".
# Graph "bar" was saved with strip_default_attrs set to False.
node_def = test_util.get_node_def_from_graph("complex",
meta_graph_bar_def.graph_def)
self.assertIn("T", node_def.attr)
self.assertIn("Tout", node_def.attr)
def testLegacyInitOp(self):
export_dir = self._get_export_dir("test_legacy_init_op")
builder = saved_model_builder.SavedModelBuilder(export_dir)
with ops.Graph().as_default():
with self.session(graph=ops.Graph()) as sess:
# Add `v1` and `v2` variables to the graph.
v1 = variables.VariableV1(1, name="v1")
v2 = variables.VariableV1(2, name="v2")
# Initialize another variable `v3` to 42.
v3 = variables.VariableV1(42, name="v3", trainable=False)
# Set up an assignment op to be run as part of the init_op.
assign_v3 = state_ops.assign(v3, math_ops.add(v1, v2))
legacy_init_op = control_flow_ops.group(
assign_v3, name="legacy_init_op")
self.evaluate(variables.global_variables_initializer())
builder.add_meta_graph_and_variables(
sess, ["foo"], legacy_init_op=legacy_init_op)
# Save the SavedModel to disk.
builder.save()
with self.session(graph=ops.Graph()) as sess:
loader.load(sess, ["foo"], export_dir)
self.assertEqual(1, self._eval("v1"))
self.assertEqual(2, self._eval("v2"))
# Evaluates to the sum of the first two variables and assigned as part
# of the legacy_init_op, following a restore.
self.assertEqual(3, self._eval("v3"))
if __name__ == "__main__":
test.main()