STT-tensorflow/tensorflow/python/ops/ragged/ragged_functional_ops.py
Edward Loper fc864b2b09 Improvements to the documentation for tf.ragged.map_flat_values.
PiperOrigin-RevId: 340432201
Change-Id: Id017c6697ae359a452c6d1132e676bc593c08654
2020-11-03 06:38:00 -08:00

181 lines
7.7 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Support for ragged tensors."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.ragged import ragged_config
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.ops.ragged import ragged_util
from tensorflow.python.util import dispatch
from tensorflow.python.util.tf_export import tf_export
@tf_export("ragged.map_flat_values")
@dispatch.add_dispatch_support
def map_flat_values(op, *args, **kwargs):
"""Applies `op` to the `flat_values` of one or more RaggedTensors.
Replaces any `RaggedTensor` in `args` or `kwargs` with its `flat_values`
tensor (which collapses all ragged dimensions), and then calls `op`. Returns
a `RaggedTensor` that is constructed from the input `RaggedTensor`s'
`nested_row_splits` and the value returned by the `op`.
If the input arguments contain multiple `RaggedTensor`s, then they must have
identical `nested_row_splits`.
This operation is generally used to apply elementwise operations to each value
in a `RaggedTensor`.
Warning: `tf.ragged.map_flat_values` does *not* apply `op` to each row of a
ragged tensor. This difference is important for non-elementwise operations,
such as `tf.reduce_sum`. If you wish to apply a non-elementwise operation to
each row of a ragged tensor, use `tf.map_fn` instead. (You may need to
specify an `output_signature` when using `tf.map_fn` with ragged tensors.)
Examples:
>>> rt = tf.ragged.constant([[1, 2, 3], [], [4, 5], [6]])
>>> tf.ragged.map_flat_values(tf.ones_like, rt)
<tf.RaggedTensor [[1, 1, 1], [], [1, 1], [1]]>
>>> tf.ragged.map_flat_values(tf.multiply, rt, rt)
<tf.RaggedTensor [[1, 4, 9], [], [16, 25], [36]]>
>>> tf.ragged.map_flat_values(tf.add, rt, 5)
<tf.RaggedTensor [[6, 7, 8], [], [9, 10], [11]]>
Example with a non-elementwise operation (note that `map_flat_values` and
`map_fn` return different results):
>>> rt = tf.ragged.constant([[1.0, 3.0], [], [3.0, 6.0, 3.0]])
>>> def normalized(x):
... return x / tf.reduce_sum(x)
>>> tf.ragged.map_flat_values(normalized, rt)
<tf.RaggedTensor [[0.0625, 0.1875], [], [0.1875, 0.375, 0.1875]]>
>>> tf.map_fn(normalized, rt)
<tf.RaggedTensor [[0.25, 0.75], [], [0.25, 0.5, 0.25]]>
Args:
op: The operation that should be applied to the RaggedTensor `flat_values`.
`op` is typically an element-wise operation (such as math_ops.add), but
any operation that preserves the size of the outermost dimension can be
used. I.e., `shape[0]` of the value returned by `op` must match
`shape[0]` of the `RaggedTensor`s' `flat_values` tensors.
*args: Arguments for `op`.
**kwargs: Keyword arguments for `op`.
Returns:
A `RaggedTensor` whose `ragged_rank` matches the `ragged_rank` of all
input `RaggedTensor`s.
Raises:
ValueError: If args contains no `RaggedTensors`, or if the `nested_splits`
of the input `RaggedTensor`s are not identical.
"""
# Replace RaggedTensors with their values; and collect the splits tensors
# from each RaggedTensor.
nested_splits_lists = []
flat_values_nrows = []
inner_args = _replace_ragged_with_flat_values(args, nested_splits_lists,
flat_values_nrows)
inner_kwargs = _replace_ragged_with_flat_values(kwargs, nested_splits_lists,
flat_values_nrows)
if not nested_splits_lists:
return op(*args, **kwargs)
if flat_values_nrows:
flat_values_nrows = set(flat_values_nrows)
if len(flat_values_nrows) != 1:
raise ValueError("Input RaggedTensors' flat_values must all have the "
"same outer-dimension size. Got sizes: %s" %
flat_values_nrows)
flat_values_nrows = flat_values_nrows.pop() # Get the single element
else:
flat_values_nrows = None
split_dtypes = set(splits[0].dtype for splits in nested_splits_lists)
if len(split_dtypes) > 1:
if not ragged_config.auto_cast_partition_dtype():
raise ValueError("Input RaggedTensors have mismatched row_splits dtypes; "
"use RaggedTensor.with_row_splits_dtype() to convert "
"them to compatible dtypes.")
nested_splits_lists = [
[math_ops.cast(s, dtypes.int64) for s in nested_splits] # pylint: disable=g-complex-comprehension
for nested_splits in nested_splits_lists]
with ops.control_dependencies(
ragged_util.assert_splits_match(nested_splits_lists)):
# Delegate to `op`
op_output = op(*inner_args, **inner_kwargs)
# Check that the result has the expected shape (if known).
if flat_values_nrows is not None:
if not op_output.shape[:1].is_compatible_with([flat_values_nrows]):
raise ValueError(
"tf.ragged.map_flat_values requires that the output of `op` have "
"the same outer-dimension size as flat_values of any ragged "
"inputs. (output shape: %s; expected outer dimension size: %s)" %
(op_output.shape, flat_values_nrows))
# Compose the result from the transformed values and the splits.
return ragged_tensor.RaggedTensor.from_nested_row_splits(
op_output, nested_splits_lists[0], validate=False)
def _replace_ragged_with_flat_values(value, nested_splits_lists,
flat_values_nrows):
"""Replace RaggedTensors with their flat_values, and record their splits.
Returns a copy of `value`, with any nested `RaggedTensor`s replaced by their
`flat_values` tensor. Looks inside lists, tuples, and dicts.
Appends each `RaggedTensor`'s `nested_splits` to `nested_splits_lists`.
Args:
value: The value that should be transformed by replacing `RaggedTensors`.
nested_splits_lists: An output parameter used to record the `nested_splits`
for any `RaggedTensors` that were replaced.
flat_values_nrows: An output parameter used to record the outer dimension
size for each replacement `flat_values` (when known). Contains a list of
int.
Returns:
A copy of `value` with nested `RaggedTensors` replaced by their `values`.
"""
# Base case
if ragged_tensor.is_ragged(value):
value = ragged_tensor.convert_to_tensor_or_ragged_tensor(value)
nested_splits_lists.append(value.nested_row_splits)
nrows = tensor_shape.dimension_at_index(value.flat_values.shape, 0).value
if nrows is not None:
flat_values_nrows.append(nrows)
return value.flat_values
# Recursion cases
def recurse(v):
return _replace_ragged_with_flat_values(v, nested_splits_lists,
flat_values_nrows)
if isinstance(value, list):
return [recurse(v) for v in value]
elif isinstance(value, tuple):
return tuple(recurse(v) for v in value)
elif isinstance(value, dict):
return dict((k, recurse(v)) for (k, v) in value.items())
else:
return value