- assertEquals -> assertEqual - assertRaisesRegexp -> assertRegexpMatches - assertRegexpMatches -> assertRegex PiperOrigin-RevId: 319118081 Change-Id: Ieb457128522920ab55d6b69a7f244ab798a7d689
382 lines
13 KiB
Python
382 lines
13 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for compute_gradient."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python.eager import backprop
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import sparse_tensor
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import custom_gradient
|
|
from tensorflow.python.ops import \
|
|
gradient_checker_v2 as gradient_checker
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import nn_ops
|
|
from tensorflow.python.ops import sparse_ops
|
|
# needs this to register gradient for SoftmaxCrossEntropyWithLogits:
|
|
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.platform import tf_logging
|
|
|
|
|
|
def _random_complex(shape, dtype):
|
|
data = np.random.random_sample(shape).astype(dtype.as_numpy_dtype)
|
|
if dtype.is_complex:
|
|
data.imag = np.random.random_sample(shape)
|
|
return data
|
|
|
|
|
|
@test_util.run_all_in_graph_and_eager_modes
|
|
class GradientCheckerTest(test.TestCase):
|
|
|
|
def testSparseTensorReshape(self):
|
|
x = constant_op.constant(2.0, shape=(2,))
|
|
|
|
def sparse_tensor_reshape(values):
|
|
sparse = sparse_tensor.SparseTensor(
|
|
indices=[[0, 0], [1, 2]], values=values, dense_shape=[3, 4])
|
|
sparse = sparse_ops.sparse_reshape(sparse, shape=(12,))
|
|
return sparse.values
|
|
|
|
error = gradient_checker.max_error(
|
|
*gradient_checker.compute_gradient(sparse_tensor_reshape, [x]))
|
|
|
|
self.assertLess(error, 1e-4)
|
|
|
|
def testWithStaticShape(self):
|
|
size = (2, 3)
|
|
constant = constant_op.constant(2.0, shape=size, name="const")
|
|
|
|
def add_constant_with_static_shape_check(x):
|
|
self.assertAllEqual(x.shape.as_list(), constant.shape.as_list())
|
|
return x + constant
|
|
|
|
x = constant_op.constant(3.0, shape=size, name="x")
|
|
|
|
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
|
|
add_constant_with_static_shape_check, [x]))
|
|
|
|
self.assertLess(error, 1e-4)
|
|
|
|
def testWithArgumentsAsTuple(self):
|
|
size = (2, 3)
|
|
x1 = constant_op.constant(2.0, shape=size, name="x1")
|
|
x2 = constant_op.constant(3.0, shape=size, name="x2")
|
|
|
|
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
|
|
lambda x1: math_ops.add(x1, x2), (x1,)))
|
|
|
|
tf_logging.info("x1 error = %f", error)
|
|
self.assertLess(error, 1e-4)
|
|
|
|
def testAddSimple(self):
|
|
size = (2, 3)
|
|
x1 = constant_op.constant(2.0, shape=size, name="x1")
|
|
x2 = constant_op.constant(3.0, shape=size, name="x2")
|
|
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
|
|
lambda x1: math_ops.add(x1, x2), [x1]))
|
|
tf_logging.info("x1 error = %f", error)
|
|
self.assertLess(error, 1e-4)
|
|
|
|
def testBfloat16(self):
|
|
x1 = constant_op.constant(2.0, dtype="bfloat16")
|
|
x2 = constant_op.constant(3.0, dtype="bfloat16")
|
|
# bfloat16 is very imprecise, so we use very large delta and error bar here.
|
|
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
|
|
lambda x1: math_ops.add(x1, x2), [x1], delta=0.1))
|
|
tf_logging.info("x1 error = %f", error)
|
|
self.assertLess(error, 0.07)
|
|
|
|
def testAddCustomized(self):
|
|
size = (2, 3)
|
|
x1 = constant_op.constant(2.0, shape=size, dtype=dtypes.float64, name="x1")
|
|
x2 = np.asarray(np.arange(6, dtype=np.float64).reshape(2, 3))
|
|
# checkint gradients for x2 using a special delta
|
|
error = gradient_checker.max_error(*gradient_checker.compute_gradient(
|
|
lambda x2: math_ops.add(x1, x2), [x2], delta=1e-2))
|
|
tf_logging.info("x2 error = %f", error)
|
|
self.assertLess(error, 1e-10)
|
|
|
|
def testGather(self):
|
|
|
|
def f(params):
|
|
index_values = [1, 3]
|
|
indices = constant_op.constant(index_values, name="i")
|
|
return array_ops.gather(params, indices, name="y")
|
|
|
|
p_shape = (4, 2)
|
|
p_size = 8
|
|
params = constant_op.constant(
|
|
np.arange(p_size).astype(np.float), shape=p_shape, name="p")
|
|
error = gradient_checker.max_error(
|
|
*gradient_checker.compute_gradient(f, [params]))
|
|
tf_logging.info("gather error = %f", error)
|
|
self.assertLess(error, 1e-4)
|
|
|
|
def testNestedGather(self):
|
|
|
|
def f(params):
|
|
index_values = [1, 3, 5, 6]
|
|
indices = constant_op.constant(index_values, name="i")
|
|
y = array_ops.gather(params, indices, name="y")
|
|
index_values2 = [0, 2]
|
|
indices2 = constant_op.constant(index_values2, name="i2")
|
|
return array_ops.gather(y, indices2, name="y2")
|
|
|
|
p_shape = (8, 2)
|
|
p_size = 16
|
|
params = constant_op.constant(
|
|
np.arange(p_size).astype(np.float), shape=p_shape, name="p")
|
|
error = gradient_checker.max_error(
|
|
*gradient_checker.compute_gradient(f, [params]))
|
|
tf_logging.info("nested gather error = %f", error)
|
|
self.assertLess(error, 1e-4)
|
|
|
|
def testComplexMul(self):
|
|
c = constant_op.constant(5 + 7j, dtype=dtypes.complex64)
|
|
|
|
def f(x):
|
|
return c * x
|
|
|
|
x_shape = c.shape
|
|
x_dtype = c.dtype
|
|
x = constant_op.constant(_random_complex(x_shape, x_dtype))
|
|
analytical, numerical = gradient_checker.compute_gradient(f, [x])
|
|
correct = np.array([[5, -7], [7, 5]])
|
|
self.assertAllEqual(correct, analytical[0])
|
|
self.assertAllClose(correct, numerical[0], rtol=1e-4)
|
|
x = constant_op.constant(_random_complex(x_shape, x_dtype))
|
|
self.assertLess(
|
|
gradient_checker.max_error(*gradient_checker.compute_gradient(f, [x])),
|
|
3e-4)
|
|
|
|
def testComplexConj(self):
|
|
|
|
def f(x):
|
|
return math_ops.conj(x)
|
|
|
|
x_shape = ()
|
|
x_dtype = dtypes.complex64
|
|
x = constant_op.constant(_random_complex(x_shape, x_dtype))
|
|
analytical, numerical = gradient_checker.compute_gradient(f, [x])
|
|
correct = np.array([[1, 0], [0, -1]])
|
|
self.assertAllEqual(correct, analytical[0])
|
|
self.assertAllClose(correct, numerical[0], rtol=2e-5)
|
|
x = constant_op.constant(_random_complex(x_shape, x_dtype))
|
|
self.assertLess(
|
|
gradient_checker.max_error(*gradient_checker.compute_gradient(f, [x])),
|
|
2e-5)
|
|
|
|
def testEmptySucceeds(self):
|
|
|
|
def f(x):
|
|
return array_ops.identity(x)
|
|
|
|
x = constant_op.constant(
|
|
np.random.random_sample((0, 3)), dtype=dtypes.float32)
|
|
for grad in gradient_checker.compute_gradient(f, [x]):
|
|
self.assertEqual(grad[0].shape, (0, 0))
|
|
error = gradient_checker.max_error(
|
|
*gradient_checker.compute_gradient(f, [x]))
|
|
self.assertEqual(error, 0)
|
|
|
|
def testEmptyMatMul(self):
|
|
|
|
def f(x, y):
|
|
return math_ops.matmul(x, y)
|
|
|
|
x = constant_op.constant(
|
|
np.random.random_sample((0, 3)), dtype=dtypes.float32)
|
|
y = constant_op.constant(
|
|
np.random.random_sample((3, 4)), dtype=dtypes.float32)
|
|
for grad in gradient_checker.compute_gradient(f, [x, y]):
|
|
self.assertEqual(grad[0].shape, (0, 0))
|
|
self.assertEqual(grad[1].shape, (0, 12))
|
|
error = gradient_checker.max_error(
|
|
*gradient_checker.compute_gradient(f, [x, y]))
|
|
self.assertEqual(error, 0)
|
|
|
|
def testEmptyFails(self):
|
|
|
|
@custom_gradient.custom_gradient
|
|
def id_bad_grad(x):
|
|
y = array_ops.identity(x)
|
|
|
|
def grad_fn(dy):
|
|
# dx = constant_op.constant(np.zeros((1, 4)), dtype=dtypes.float32)
|
|
dx = array_ops.transpose(dy)
|
|
return dx
|
|
|
|
return y, grad_fn
|
|
|
|
def f(x):
|
|
return id_bad_grad(x)
|
|
|
|
x = constant_op.constant(
|
|
np.random.random_sample((0, 3)), dtype=dtypes.float32)
|
|
bad = r"Empty gradient has wrong shape: expected \(0, 3\), got \(3, 0\)"
|
|
with self.assertRaisesRegex(ValueError, bad):
|
|
gradient_checker.compute_gradient(f, [x])
|
|
|
|
def testNaNGradFails(self):
|
|
|
|
@custom_gradient.custom_gradient
|
|
def id_nan_grad(x):
|
|
y = array_ops.identity(x)
|
|
|
|
def grad_fn(dy):
|
|
dx = np.nan * dy
|
|
# dx = dy
|
|
return dx
|
|
|
|
return y, grad_fn
|
|
|
|
def f(x):
|
|
return id_nan_grad(x)
|
|
|
|
x = constant_op.constant(
|
|
np.random.random_sample((1, 1)), dtype=dtypes.float32)
|
|
error = gradient_checker.max_error(
|
|
*gradient_checker.compute_gradient(f, [x]))
|
|
# Typical test would assert error < max_err, so assert this test would
|
|
# raise AssertionError, since NaN is not < 1.0.
|
|
with self.assertRaisesRegex(AssertionError, "nan not less than 1.0"):
|
|
self.assertLess(error, 1.0)
|
|
|
|
def testGradGrad(self):
|
|
|
|
def f(x):
|
|
with backprop.GradientTape() as tape:
|
|
tape.watch(x)
|
|
y = math_ops.square(x)
|
|
z = math_ops.square(y)
|
|
return tape.gradient(z, x)
|
|
|
|
analytical, numerical = gradient_checker.compute_gradient(f, [2.0])
|
|
self.assertAllEqual([[[48.]]], analytical)
|
|
self.assertAllClose([[[48.]]], numerical, rtol=1e-4)
|
|
|
|
|
|
@test_util.run_all_in_graph_and_eager_modes
|
|
class MiniMNISTTest(test.TestCase):
|
|
|
|
# Gradient checker for MNIST.
|
|
def _BuildAndTestMiniMNIST(self, param_index, tag):
|
|
# Fix seed to avoid occasional flakiness
|
|
np.random.seed(6)
|
|
|
|
# Hyperparameters
|
|
batch = 3
|
|
inputs = 16
|
|
features = 32
|
|
classes = 10
|
|
|
|
# Define the parameters
|
|
inp_data = np.random.random_sample(inputs * batch)
|
|
hidden_weight_data = np.random.randn(inputs * features) / np.sqrt(inputs)
|
|
hidden_bias_data = np.random.random_sample(features)
|
|
sm_weight_data = np.random.randn(features * classes) / np.sqrt(features)
|
|
sm_bias_data = np.random.random_sample(classes)
|
|
|
|
# special care for labels since they need to be normalized per batch
|
|
label_data = np.random.random(batch * classes).reshape((batch, classes))
|
|
s = label_data.sum(axis=1)
|
|
label_data /= s[:, None]
|
|
|
|
# We treat the inputs as "parameters" here
|
|
inp = constant_op.constant(
|
|
inp_data.tolist(),
|
|
shape=[batch, inputs],
|
|
dtype=dtypes.float64,
|
|
name="inp")
|
|
hidden_weight = constant_op.constant(
|
|
hidden_weight_data.tolist(),
|
|
shape=[inputs, features],
|
|
dtype=dtypes.float64,
|
|
name="hidden_weight")
|
|
hidden_bias = constant_op.constant(
|
|
hidden_bias_data.tolist(),
|
|
shape=[features],
|
|
dtype=dtypes.float64,
|
|
name="hidden_bias")
|
|
softmax_weight = constant_op.constant(
|
|
sm_weight_data.tolist(),
|
|
shape=[features, classes],
|
|
dtype=dtypes.float64,
|
|
name="softmax_weight")
|
|
softmax_bias = constant_op.constant(
|
|
sm_bias_data.tolist(),
|
|
shape=[classes],
|
|
dtype=dtypes.float64,
|
|
name="softmax_bias")
|
|
|
|
# List all the parameter so that we can test them one at a time
|
|
all_params = [inp, hidden_weight, hidden_bias, softmax_weight, softmax_bias]
|
|
|
|
# Now, Building MNIST
|
|
def f(inp, hidden_weight, hidden_bias, softmax_weight, softmax_bias):
|
|
features = nn_ops.relu(
|
|
nn_ops.xw_plus_b(inp, hidden_weight, hidden_bias), name="features")
|
|
logits = nn_ops.xw_plus_b(
|
|
features, softmax_weight, softmax_bias, name="logits")
|
|
labels = constant_op.constant(
|
|
label_data.tolist(),
|
|
shape=[batch, classes],
|
|
dtype=dtypes.float64,
|
|
name="labels")
|
|
cost = nn_ops.softmax_cross_entropy_with_logits(
|
|
labels=labels, logits=logits, name="cost")
|
|
return cost
|
|
|
|
def f_restricted(x):
|
|
xs = all_params
|
|
i = param_index
|
|
# use x for the i-th parameter
|
|
xs = xs[0:i] + [x] + xs[i + 1:]
|
|
return f(*xs)
|
|
|
|
# Test the gradients.
|
|
err = gradient_checker.max_error(*gradient_checker.compute_gradient(
|
|
f_restricted, [all_params[param_index]], delta=1e-5))
|
|
|
|
tf_logging.info("Mini MNIST: %s gradient error = %g", tag, err)
|
|
return err
|
|
|
|
def testInputGradient(self):
|
|
self.assertLess(self._BuildAndTestMiniMNIST(0, "input"), 1e-8)
|
|
|
|
def testHiddenWeightGradient(self):
|
|
self.assertLess(self._BuildAndTestMiniMNIST(1, "hidden_weight"), 1e-8)
|
|
|
|
def testHiddenBiasGradient(self):
|
|
self.assertLess(self._BuildAndTestMiniMNIST(2, "hidden_bias"), 1e-8)
|
|
|
|
def testSoftmaxWeightGradient(self):
|
|
self.assertLess(self._BuildAndTestMiniMNIST(3, "softmax_weight"), 1e-8)
|
|
|
|
def testSoftmaxBiasGradient(self):
|
|
self.assertLess(self._BuildAndTestMiniMNIST(4, "softmax_bias"), 1e-8)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|