Add argv to benchmark/main function so they can handle passing command line arguments. Change: 144254260
148 lines
5.1 KiB
Python
148 lines
5.1 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Benchmark for split and grad of split."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import itertools
|
|
import random
|
|
import time
|
|
|
|
from tensorflow.core.protobuf import config_pb2
|
|
from tensorflow.python.client import session as session_lib
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import control_flow_ops
|
|
from tensorflow.python.ops import gradients_impl
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
def build_graph(device, input_shape, variable, num_inputs, axis, grad):
|
|
"""Build a graph containing a sequence of concat operations.
|
|
|
|
Args:
|
|
device: string, the device to run on.
|
|
input_shape: shape of the input tensors.
|
|
variable: whether or not to randomize the input shape
|
|
num_inputs: the number of inputs to concat
|
|
axis: axis to be concat'ed
|
|
grad: if True compute the gradient
|
|
|
|
Returns:
|
|
An array of tensors to run()
|
|
"""
|
|
with ops.device("/%s:0" % device):
|
|
if not variable:
|
|
inputs = [array_ops.zeros(input_shape) for _ in range(num_inputs)]
|
|
else:
|
|
if axis == 1:
|
|
inputs = [
|
|
array_ops.zeros([
|
|
input_shape[0],
|
|
random.randint(max(1, input_shape[1] - 5), input_shape[1] + 5)
|
|
]) for _ in range(num_inputs)
|
|
]
|
|
else:
|
|
inputs = [
|
|
array_ops.zeros([
|
|
random.randint(max(1, input_shape[0] - 5), input_shape[0] + 5),
|
|
input_shape[1]
|
|
]) for _ in range(num_inputs)
|
|
]
|
|
|
|
outputs = [array_ops.concat(inputs, axis) for _ in range(100)]
|
|
if grad:
|
|
return control_flow_ops.group(*list(
|
|
itertools.chain.from_iterable([
|
|
gradients_impl.gradients(output, inputs) for output in outputs
|
|
])))
|
|
else:
|
|
return control_flow_ops.group(*outputs)
|
|
|
|
|
|
class ConcatBenchmark(test.Benchmark):
|
|
"""Benchmark concat."""
|
|
|
|
def _run_graph(self, device, input_shape, variable, num_inputs, axis, grad,
|
|
num_iters):
|
|
"""Run the graph and print its execution time.
|
|
|
|
Args:
|
|
device: string, the device to run on.
|
|
input_shape: shape of the input tensors.
|
|
variable: whether or not the input shape should be fixed
|
|
num_inputs: the number of inputs to concat
|
|
axis: axis to be concat'ed
|
|
grad: if True compute the gradient
|
|
num_iters: number of steps to run.
|
|
|
|
Returns:
|
|
The duration of the run in seconds.
|
|
"""
|
|
graph = ops.Graph()
|
|
with graph.as_default():
|
|
outputs = build_graph(device, input_shape, variable, num_inputs, axis,
|
|
grad)
|
|
config = config_pb2.ConfigProto(graph_options=config_pb2.GraphOptions(
|
|
optimizer_options=config_pb2.OptimizerOptions(
|
|
opt_level=config_pb2.OptimizerOptions.L0)))
|
|
with session_lib.Session(graph=graph, config=config) as session:
|
|
variables.global_variables_initializer().run()
|
|
_ = session.run(outputs) # warm up.
|
|
start_time = time.time()
|
|
for _ in range(num_iters):
|
|
_ = session.run(outputs)
|
|
duration = time.time() - start_time
|
|
print("%s shape:%d/%d var: %r #inputs:%d axis:%d grad:%r - %f secs - %f "
|
|
"GB/sec" % (device, input_shape[0], input_shape[1], variable,
|
|
num_inputs, axis, grad, duration / num_iters,
|
|
num_inputs * input_shape[0] * input_shape[1] * 4 * 2 *
|
|
100 / (duration / num_iters) / 1e9))
|
|
|
|
name_template = (
|
|
"concat_bench_{device}_input_shape_{shape}_variable_{variable}"
|
|
"_num_inputs_{num_inputs}_axis_{axis}_grad_{grad}")
|
|
|
|
self.report_benchmark(name=name_template.format(
|
|
device=device,
|
|
num_inputs=num_inputs,
|
|
variable=variable,
|
|
grad=grad,
|
|
shape=str(input_shape).replace(" ", ""),
|
|
axis=str(axis),
|
|
iters=num_iters))
|
|
|
|
return duration
|
|
|
|
def benchmark_concat(self):
|
|
print("Forward vs backward concat")
|
|
shapes = [[2000, 8], [8, 2000], [100, 18], [1000, 18], [100, 97],
|
|
[1000, 97], [10000, 1], [1, 10000]]
|
|
axis_ = [0, 1]
|
|
num_inputs = 20
|
|
num_iters = [10] * len(shapes)
|
|
variable = [False, True] # fixed input size or not
|
|
for shape, iters in zip(shapes, num_iters):
|
|
for axis in axis_:
|
|
for v in variable:
|
|
self._run_graph("cpu", shape, v, num_inputs, axis, True, iters)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|