STT-tensorflow/tensorflow/python/ops/collective_ops_xla_test.py
George Karpenkov 9df9d06e27 Rationale:
- Just `compile` is a Python built-in, and is already overloaded by the Keras
   `compile` method.
 - `jit` is closer to other ML frameworks.
 - Technically speaking, `jit=True` is not self-descriptive (it does not
   specify what is it doing just-in-time)
 - Moreover, `tf.function` by itself without compilation could be described as
   a JIT.
 - Also `jit` by itself is less grep'able.
 - Thus `@tf.function(jit_compile=True)` is the preferred spelling.

PiperOrigin-RevId: 340503501
Change-Id: I7bffe60aca69be6640390f6e6c4af40c6c4dbfda
2020-11-03 12:55:59 -08:00

79 lines
3.1 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Collective Operations with XLA."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.core.protobuf import config_pb2
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.python.eager import def_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import collective_ops
from tensorflow.python.platform import test
class CollectiveOpXlaTest(test.TestCase):
def testScopedAllocatorWithXla(self):
group_size = 2
group_key = 1
instance_key1 = 1
instance_key2 = 2
tensor_size = 10
graph_options = config_pb2.GraphOptions(
optimizer_options=config_pb2.OptimizerOptions(
do_constant_folding=False))
cfg = config_pb2.ConfigProto(device_count={'CPU': group_size},
graph_options=graph_options)
rewrite_options = cfg.graph_options.rewrite_options
rewrite_options.scoped_allocator_optimization = (
rewriter_config_pb2.RewriterConfig.ON)
del rewrite_options.scoped_allocator_opts.enable_op[:]
rewrite_options.scoped_allocator_opts.enable_op.append('CollectiveReduce')
# Tests that execute collectives need to be enclosed in graph or tf.function
with ops.Graph().as_default(), self.session(config=cfg) as sess:
run_ops = []
for i in range(group_size):
with ops.device('CPU:%d' % i):
tensor_val = [i + 1.] * tensor_size
constant = constant_op.constant(tensor_val)
@def_function.function(jit_compile=True)
def f(x):
return 2 * x + 1
input_tensor1 = array_ops.identity(f(constant))
input_tensor2 = array_ops.identity(f(constant))
reduced_tensor1 = collective_ops.all_reduce(
input_tensor1, group_size, group_key, instance_key1, 'Add', 'Id')
reduced_tensor2 = collective_ops.all_reduce(
input_tensor2, group_size, group_key, instance_key2, 'Add', 'Id')
run_ops.append(array_ops.identity(reduced_tensor1))
run_ops.append(array_ops.identity(reduced_tensor2))
results = sess.run(run_ops)
for result in results:
for result_val in result:
self.assertEqual(result_val, 8.)
if __name__ == '__main__':
test.main()