- Just `compile` is a Python built-in, and is already overloaded by the Keras `compile` method. - `jit` is closer to other ML frameworks. - Technically speaking, `jit=True` is not self-descriptive (it does not specify what is it doing just-in-time) - Moreover, `tf.function` by itself without compilation could be described as a JIT. - Also `jit` by itself is less grep'able. - Thus `@tf.function(jit_compile=True)` is the preferred spelling. PiperOrigin-RevId: 340503501 Change-Id: I7bffe60aca69be6640390f6e6c4af40c6c4dbfda
79 lines
3.1 KiB
Python
79 lines
3.1 KiB
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Collective Operations with XLA."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.core.protobuf import config_pb2
|
|
from tensorflow.core.protobuf import rewriter_config_pb2
|
|
from tensorflow.python.eager import def_function
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import collective_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class CollectiveOpXlaTest(test.TestCase):
|
|
|
|
def testScopedAllocatorWithXla(self):
|
|
group_size = 2
|
|
group_key = 1
|
|
instance_key1 = 1
|
|
instance_key2 = 2
|
|
tensor_size = 10
|
|
|
|
graph_options = config_pb2.GraphOptions(
|
|
optimizer_options=config_pb2.OptimizerOptions(
|
|
do_constant_folding=False))
|
|
cfg = config_pb2.ConfigProto(device_count={'CPU': group_size},
|
|
graph_options=graph_options)
|
|
rewrite_options = cfg.graph_options.rewrite_options
|
|
rewrite_options.scoped_allocator_optimization = (
|
|
rewriter_config_pb2.RewriterConfig.ON)
|
|
del rewrite_options.scoped_allocator_opts.enable_op[:]
|
|
rewrite_options.scoped_allocator_opts.enable_op.append('CollectiveReduce')
|
|
|
|
# Tests that execute collectives need to be enclosed in graph or tf.function
|
|
with ops.Graph().as_default(), self.session(config=cfg) as sess:
|
|
run_ops = []
|
|
for i in range(group_size):
|
|
with ops.device('CPU:%d' % i):
|
|
tensor_val = [i + 1.] * tensor_size
|
|
constant = constant_op.constant(tensor_val)
|
|
|
|
@def_function.function(jit_compile=True)
|
|
def f(x):
|
|
return 2 * x + 1
|
|
|
|
input_tensor1 = array_ops.identity(f(constant))
|
|
input_tensor2 = array_ops.identity(f(constant))
|
|
reduced_tensor1 = collective_ops.all_reduce(
|
|
input_tensor1, group_size, group_key, instance_key1, 'Add', 'Id')
|
|
reduced_tensor2 = collective_ops.all_reduce(
|
|
input_tensor2, group_size, group_key, instance_key2, 'Add', 'Id')
|
|
run_ops.append(array_ops.identity(reduced_tensor1))
|
|
run_ops.append(array_ops.identity(reduced_tensor2))
|
|
results = sess.run(run_ops)
|
|
for result in results:
|
|
for result_val in result:
|
|
self.assertEqual(result_val, 8.)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|