STT-tensorflow/tensorflow/python/mlir_wrapper.cc
Kuangyuan Chen a407b1f41f Add the entry point for SavedModelSignatureDefImporterLite in tf-mlir-translate
and relevant python wrappers.

PiperOrigin-RevId: 340945906
Change-Id: I54697b98c18065f829f7f85383512b4c1a460a22
2020-11-05 16:23:20 -08:00

93 lines
4.1 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "pybind11/pybind11.h"
#include "tensorflow/c/tf_status.h"
#include "tensorflow/compiler/mlir/python/mlir.h"
#include "tensorflow/python/lib/core/pybind11_lib.h"
#include "tensorflow/python/lib/core/pybind11_status.h"
#include "tensorflow/python/lib/core/safe_ptr.h"
PYBIND11_MODULE(_pywrap_mlir, m) {
m.def("ImportGraphDef",
[](const std::string &graphdef, const std::string &pass_pipeline) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output =
tensorflow::ImportGraphDef(graphdef, pass_pipeline, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ImportFunction", [](const std::string &functiondef,
const std::string &functiondef_library,
const std::string &pass_pipeline) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output = tensorflow::ImportFunction(
functiondef, functiondef_library, pass_pipeline, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalConvertSavedModelToMlir",
[](const std::string &saved_model_path,
const std::string &exported_names, bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output = tensorflow::ExperimentalConvertSavedModelToMlir(
saved_model_path, exported_names, show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalConvertSavedModelV1ToMlirLite",
[](const std::string &saved_model_path, const std::string &tags,
bool upgrade_legacy, bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output =
tensorflow::ExperimentalConvertSavedModelV1ToMlirLite(
saved_model_path, tags, upgrade_legacy, show_debug_info,
status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalConvertSavedModelV1ToMlir",
[](const std::string &saved_model_path, const std::string &tags,
bool lift_variables, bool upgrade_legacy, bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output =
tensorflow::ExperimentalConvertSavedModelV1ToMlir(
saved_model_path, tags, lift_variables, upgrade_legacy,
show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalRunPassPipeline",
[](const std::string &mlir_txt, const std::string &pass_pipeline,
bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output = tensorflow::ExperimentalRunPassPipeline(
mlir_txt, pass_pipeline, show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
};