This is the first of many cls that remove __init__ file content from keras to prevent hourglass imports. PiperOrigin-RevId: 271414127
192 lines
5.6 KiB
Python
192 lines
5.6 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Scikit-learn API wrapper."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.python import keras
|
|
from tensorflow.python.keras import testing_utils
|
|
from tensorflow.python.keras.wrappers import scikit_learn
|
|
from tensorflow.python.platform import test
|
|
|
|
INPUT_DIM = 5
|
|
HIDDEN_DIM = 5
|
|
TRAIN_SAMPLES = 10
|
|
TEST_SAMPLES = 5
|
|
NUM_CLASSES = 2
|
|
BATCH_SIZE = 5
|
|
EPOCHS = 1
|
|
|
|
|
|
def build_fn_clf(hidden_dim):
|
|
model = keras.models.Sequential()
|
|
model.add(keras.layers.Dense(INPUT_DIM, input_shape=(INPUT_DIM,)))
|
|
model.add(keras.layers.Activation('relu'))
|
|
model.add(keras.layers.Dense(hidden_dim))
|
|
model.add(keras.layers.Activation('relu'))
|
|
model.add(keras.layers.Dense(NUM_CLASSES))
|
|
model.add(keras.layers.Activation('softmax'))
|
|
model.compile(
|
|
optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
|
|
return model
|
|
|
|
|
|
def assert_classification_works(clf):
|
|
np.random.seed(42)
|
|
(x_train, y_train), (x_test, _) = testing_utils.get_test_data(
|
|
train_samples=TRAIN_SAMPLES,
|
|
test_samples=TEST_SAMPLES,
|
|
input_shape=(INPUT_DIM,),
|
|
num_classes=NUM_CLASSES)
|
|
|
|
clf.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
|
|
|
score = clf.score(x_train, y_train, batch_size=BATCH_SIZE)
|
|
assert np.isscalar(score) and np.isfinite(score)
|
|
|
|
preds = clf.predict(x_test, batch_size=BATCH_SIZE)
|
|
assert preds.shape == (TEST_SAMPLES,)
|
|
for prediction in np.unique(preds):
|
|
assert prediction in range(NUM_CLASSES)
|
|
|
|
proba = clf.predict_proba(x_test, batch_size=BATCH_SIZE)
|
|
assert proba.shape == (TEST_SAMPLES, NUM_CLASSES)
|
|
assert np.allclose(np.sum(proba, axis=1), np.ones(TEST_SAMPLES))
|
|
|
|
|
|
def build_fn_reg(hidden_dim):
|
|
model = keras.models.Sequential()
|
|
model.add(keras.layers.Dense(INPUT_DIM, input_shape=(INPUT_DIM,)))
|
|
model.add(keras.layers.Activation('relu'))
|
|
model.add(keras.layers.Dense(hidden_dim))
|
|
model.add(keras.layers.Activation('relu'))
|
|
model.add(keras.layers.Dense(1))
|
|
model.add(keras.layers.Activation('linear'))
|
|
model.compile(
|
|
optimizer='sgd', loss='mean_absolute_error', metrics=['accuracy'])
|
|
return model
|
|
|
|
|
|
def assert_regression_works(reg):
|
|
np.random.seed(42)
|
|
(x_train, y_train), (x_test, _) = testing_utils.get_test_data(
|
|
train_samples=TRAIN_SAMPLES,
|
|
test_samples=TEST_SAMPLES,
|
|
input_shape=(INPUT_DIM,),
|
|
num_classes=NUM_CLASSES)
|
|
|
|
reg.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
|
|
|
score = reg.score(x_train, y_train, batch_size=BATCH_SIZE)
|
|
assert np.isscalar(score) and np.isfinite(score)
|
|
|
|
preds = reg.predict(x_test, batch_size=BATCH_SIZE)
|
|
assert preds.shape == (TEST_SAMPLES,)
|
|
|
|
|
|
class ScikitLearnAPIWrapperTest(test.TestCase):
|
|
|
|
def test_classify_build_fn(self):
|
|
with self.cached_session():
|
|
clf = scikit_learn.KerasClassifier(
|
|
build_fn=build_fn_clf,
|
|
hidden_dim=HIDDEN_DIM,
|
|
batch_size=BATCH_SIZE,
|
|
epochs=EPOCHS)
|
|
|
|
assert_classification_works(clf)
|
|
|
|
def test_classify_class_build_fn(self):
|
|
|
|
class ClassBuildFnClf(object):
|
|
|
|
def __call__(self, hidden_dim):
|
|
return build_fn_clf(hidden_dim)
|
|
|
|
with self.cached_session():
|
|
clf = scikit_learn.KerasClassifier(
|
|
build_fn=ClassBuildFnClf(),
|
|
hidden_dim=HIDDEN_DIM,
|
|
batch_size=BATCH_SIZE,
|
|
epochs=EPOCHS)
|
|
|
|
assert_classification_works(clf)
|
|
|
|
def test_classify_inherit_class_build_fn(self):
|
|
|
|
class InheritClassBuildFnClf(scikit_learn.KerasClassifier):
|
|
|
|
def __call__(self, hidden_dim):
|
|
return build_fn_clf(hidden_dim)
|
|
|
|
with self.cached_session():
|
|
clf = InheritClassBuildFnClf(
|
|
build_fn=None,
|
|
hidden_dim=HIDDEN_DIM,
|
|
batch_size=BATCH_SIZE,
|
|
epochs=EPOCHS)
|
|
|
|
assert_classification_works(clf)
|
|
|
|
def test_regression_build_fn(self):
|
|
with self.cached_session():
|
|
reg = scikit_learn.KerasRegressor(
|
|
build_fn=build_fn_reg,
|
|
hidden_dim=HIDDEN_DIM,
|
|
batch_size=BATCH_SIZE,
|
|
epochs=EPOCHS)
|
|
|
|
assert_regression_works(reg)
|
|
|
|
def test_regression_class_build_fn(self):
|
|
|
|
class ClassBuildFnReg(object):
|
|
|
|
def __call__(self, hidden_dim):
|
|
return build_fn_reg(hidden_dim)
|
|
|
|
with self.cached_session():
|
|
reg = scikit_learn.KerasRegressor(
|
|
build_fn=ClassBuildFnReg(),
|
|
hidden_dim=HIDDEN_DIM,
|
|
batch_size=BATCH_SIZE,
|
|
epochs=EPOCHS)
|
|
|
|
assert_regression_works(reg)
|
|
|
|
def test_regression_inherit_class_build_fn(self):
|
|
|
|
class InheritClassBuildFnReg(scikit_learn.KerasRegressor):
|
|
|
|
def __call__(self, hidden_dim):
|
|
return build_fn_reg(hidden_dim)
|
|
|
|
with self.cached_session():
|
|
reg = InheritClassBuildFnReg(
|
|
build_fn=None,
|
|
hidden_dim=HIDDEN_DIM,
|
|
batch_size=BATCH_SIZE,
|
|
epochs=EPOCHS)
|
|
|
|
assert_regression_works(reg)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|