STT-tensorflow/tensorflow/python/keras/tests/tracking_util_test.py
Scott Zhu 0f53c3fd79 Fix more build dependency and tests in keras for sync to OSS.
PiperOrigin-RevId: 336947422
Change-Id: Ib6c829551b45050ace5a94aa4450a8f36fea46e6
2020-10-13 13:57:28 -07:00

940 lines
40 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import weakref
import six
from tensorflow.python.eager import backprop
from tensorflow.python.eager import context
from tensorflow.python.eager import def_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras import combinations
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.engine import input_layer
from tensorflow.python.keras.engine import sequential
from tensorflow.python.keras.engine import training
from tensorflow.python.keras.layers import core
from tensorflow.python.keras.optimizer_v2 import adam
from tensorflow.python.module import module
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import template
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables as variables_lib
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import checkpoint_management
from tensorflow.python.training import saver as saver_lib
from tensorflow.python.training import training_util
from tensorflow.python.training.tracking import graph_view
from tensorflow.python.training.tracking import util as trackable_utils
# pylint: disable=not-callable
class MyModel(training.Model):
"""A concrete Model for testing."""
def __init__(self):
super(MyModel, self).__init__()
self._named_dense = core.Dense(1, use_bias=True)
self._second = core.Dense(1, use_bias=False)
# We can still track Trackables which aren't Layers.
self._non_layer = NonLayerTrackable()
def call(self, values):
ret = self._second(self._named_dense(values))
return ret
class NonLayerTrackable(module.Module):
def __init__(self):
super(NonLayerTrackable, self).__init__()
self.a_variable = trackable_utils.add_variable(
self, name="a_variable", shape=[])
class InterfaceTests(test.TestCase):
def testLayerDeduplication(self):
model = training.Model()
layer_one = core.Dense(1)
layer_two = core.Dense(1)
model.other_path = [layer_one, layer_two]
model.l2 = layer_two
model.l1 = layer_one
self.assertEqual([layer_one, layer_two], model.layers)
def testSaveWithOnlyKerasSession(self):
with ops.Graph().as_default(), self.cached_session():
inp = input_layer.Input([1])
dense = core.Dense(1)(inp)
model = training.Model(inp, dense)
model.compile(optimizer="sgd", loss="mse")
model.fit([1.], [2.])
checkpoint = trackable_utils.Checkpoint(model=model)
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
def testObjectMetadata(self):
if not context.executing_eagerly():
self.skipTest("Run in eager mode only.")
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
dense = core.Dense(1)
checkpoint = trackable_utils.Checkpoint(dense=dense)
dense(constant_op.constant([[1.]]))
save_path = checkpoint.save(checkpoint_prefix)
objects = trackable_utils.object_metadata(save_path)
all_variable_names = []
for obj in objects.nodes:
for attribute in obj.attributes:
all_variable_names.append(attribute.full_name)
self.assertIn("dense/kernel", all_variable_names)
class CheckpointingTests(keras_parameterized.TestCase):
@test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
def testNamingWithOptimizer(self):
input_value = constant_op.constant([[3.]])
model = MyModel()
# A nuisance Model using the same optimizer. Its slot variables should not
# go in the checkpoint, since it is never depended on.
other_model = MyModel()
optimizer = adam.Adam(0.001)
step = training_util.get_or_create_global_step()
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model, step=step)
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = control_flow_ops.group(
optimizer.apply_gradients(zip(gradients, variables)),
step.assign_add(1))
with backprop.GradientTape() as tape:
loss = other_model(input_value)
variables = other_model.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
named_variables, serialized_graph, _ = graph_view.ObjectGraphView(
root_trackable).serialize_object_graph()
expected_slot_keys = (
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m",
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v",
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m",
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v",
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m",
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v",
)
expected_checkpoint_names = (
# Created in the root node, so no prefix.
"step",
"model/_second/kernel",
"model/_named_dense/kernel",
"model/_named_dense/bias",
# non-Layer dependency of the model
"model/_non_layer/a_variable",
"optimizer/learning_rate",
"optimizer/beta_1",
"optimizer/beta_2",
"optimizer/iter",
"optimizer/decay",
) + expected_slot_keys
suffix = "/.ATTRIBUTES/VARIABLE_VALUE"
expected_checkpoint_names = [
name + suffix for name in expected_checkpoint_names]
named_variables = {v.name: v for v in named_variables}
six.assertCountEqual(self, expected_checkpoint_names,
named_variables.keys())
# Check that we've mapped to the right variable objects (not exhaustive)
self.assertEqual(
"global_step",
named_variables["step" + suffix].full_name)
self.assertEqual(
"my_model/dense_1/kernel",
named_variables["model/_second/kernel" + suffix].full_name)
self.assertEqual(
"my_model/dense/kernel",
named_variables["model/_named_dense/kernel" + suffix].full_name)
self.assertEqual("Adam/beta_1",
named_variables["optimizer/beta_1" + suffix].full_name)
self.assertEqual("Adam/beta_2",
named_variables["optimizer/beta_2" + suffix].full_name)
# Spot check the generated protocol buffers.
self.assertEqual("optimizer",
serialized_graph.nodes[0].children[1].local_name)
optimizer_node = serialized_graph.nodes[
serialized_graph.nodes[0].children[1].node_id]
children = [node.local_name for node in optimizer_node.children]
six.assertCountEqual(
self,
# hyper variable dependencies
["beta_1", "beta_2", "iter", "decay", "learning_rate"],
children)
serialized_slot_keys = []
for slot in optimizer_node.slot_variables:
for attribute in (
serialized_graph.nodes[slot.slot_variable_node_id].attributes):
serialized_slot_keys.append(attribute.checkpoint_key)
six.assertCountEqual(
self,
[key + suffix for key in expected_slot_keys],
serialized_slot_keys)
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def testSaveRestore(self):
with self.test_session():
model = MyModel()
optimizer = adam.Adam(0.001)
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
self.assertFalse(root_trackable.save_counter.trainable)
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
prefix = os.path.join(self.get_temp_dir(), "ckpt")
self.evaluate(state_ops.assign(model._named_dense.variables[1], [42.]))
m_bias_slot = optimizer.get_slot(model._named_dense.variables[1], "m")
self.evaluate(state_ops.assign(m_bias_slot, [1.5]))
save_path = root_trackable.save(file_prefix=prefix)
self.evaluate(state_ops.assign(model._named_dense.variables[1], [43.]))
self.evaluate(state_ops.assign(root_trackable.save_counter, 3))
optimizer_variables = self.evaluate(
sorted(optimizer.variables(), key=lambda v: v.name))
self.evaluate(state_ops.assign(m_bias_slot, [-2.]))
# Immediate restoration
status = root_trackable.restore(save_path=save_path).assert_consumed()
status.run_restore_ops()
self.assertAllEqual([42.], self.evaluate(model._named_dense.variables[1]))
self.assertAllEqual(1, self.evaluate(root_trackable.save_counter))
self.assertAllEqual([1.5], self.evaluate(m_bias_slot))
if not context.executing_eagerly():
return # Restore-on-create is only supported when executing eagerly
on_create_model = MyModel()
on_create_optimizer = adam.Adam(0.001)
on_create_root = trackable_utils.Checkpoint(
optimizer=on_create_optimizer, model=on_create_model)
# Deferred restoration
status = on_create_root.restore(save_path=save_path)
status.assert_nontrivial_match()
status.assert_existing_objects_matched()
with self.assertRaises(AssertionError):
status.assert_consumed()
on_create_model(constant_op.constant([[3.]])) # create variables
self.assertAllEqual(1, self.evaluate(on_create_root.save_counter))
self.assertAllEqual([42.],
self.evaluate(
on_create_model._named_dense.variables[1]))
on_create_m_bias_slot = on_create_optimizer.get_slot(
on_create_model._named_dense.variables[1], "m")
status.assert_existing_objects_matched()
if not context.executing_eagerly():
with self.assertRaises(AssertionError):
status.assert_consumed()
# Optimizer slot variables are created when the original variable is
# restored.
self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot))
dummy_var = resource_variable_ops.ResourceVariable([1.])
on_create_optimizer.minimize(loss=dummy_var.read_value,
var_list=[dummy_var])
status.assert_existing_objects_matched()
status.assert_consumed()
self.assertAllEqual(
optimizer_variables,
# Creation order is different, so .variables() needs to be re-sorted.
self.evaluate(sorted(optimizer.variables(), key=lambda v: v.name)))
# TODO(allenl): Debug garbage created by this test in python3.
def testDeferredRestorationUsageEager(self):
"""An idiomatic eager execution example."""
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
root.restore(checkpoint_management.latest_checkpoint(
checkpoint_directory))
for _ in range(num_training_steps):
# TODO(allenl): Use a Dataset and serialize/checkpoint it.
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
root.optimizer.iterations.numpy())
def testUsageGraph(self):
"""Expected usage when graph building."""
with context.graph_mode():
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with ops.Graph().as_default():
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.CheckpointV1(
optimizer=optimizer, model=model)
input_value = constant_op.constant([[3.]])
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
with self.session(graph=ops.get_default_graph()) as session:
status = root.restore(save_path=checkpoint_path)
status.initialize_or_restore(session=session)
if checkpoint_path is None:
self.assertEqual(0, training_continuation)
with self.assertRaises(AssertionError):
status.assert_consumed()
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
else:
status.assert_consumed()
status.assert_existing_objects_matched()
for _ in range(num_training_steps):
session.run(train_op)
root.save(file_prefix=checkpoint_prefix, session=session)
self.assertEqual((training_continuation + 1) * num_training_steps,
session.run(root.optimizer.iterations))
self.assertEqual(training_continuation + 1,
session.run(root.save_counter))
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def testAgnosticUsage(self):
"""Graph/eager agnostic usage."""
# Does create garbage when executing eagerly due to ops.Graph() creation.
with self.test_session():
num_training_steps = 10
checkpoint_directory = self.get_temp_dir()
optimizer = adam.Adam(0.001)
def _train_fn(model, input_value):
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
for training_continuation in range(3):
with testing_utils.device(should_use_gpu=True):
model = MyModel()
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
manager = checkpoint_management.CheckpointManager(
root, checkpoint_directory, max_to_keep=1)
status = root.restore(save_path=manager.latest_checkpoint)
input_value = constant_op.constant([[3.]])
train_fn = functools.partial(_train_fn, model, input_value)
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
manager.save()
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(root.optimizer.iterations))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
@combinations.generate(combinations.combine(mode=["eager"]))
def testPartialRestoreWarningObject(self):
optimizer = adam.Adam(0.0)
original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.),
v2=variables_lib.Variable(3.),
optimizer=optimizer)
# Create a slot variable to save
optimizer.minimize(original_root.v1.read_value, [original_root.v1])
prefix = os.path.join(self.get_temp_dir(), "ckpt")
save_path = original_root.save(prefix)
partial_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(0.))
weak_partial_root = weakref.ref(partial_root)
weak_v1 = weakref.ref(partial_root.v1)
partial_root.restore(save_path)
self.assertEqual(2., partial_root.v1.numpy())
with test.mock.patch.object(logging, "warning") as mock_log:
del partial_root
self.assertIsNone(weak_partial_root())
self.assertIsNone(weak_v1())
messages = str(mock_log.call_args_list)
self.assertIn("(root).v2'", messages)
self.assertIn("(root).optimizer's state 'm' for (root).v1", messages)
self.assertNotIn("(root).v1'", messages)
self.assertIn("expect_partial()", messages)
# pylint: disable=cell-var-from-loop
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def testWithDefun(self):
with self.test_session():
num_training_steps = 2
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
for training_continuation in range(3):
with testing_utils.device(should_use_gpu=True):
model = MyModel()
# Don't actually train so we can test variable values
optimizer = adam.Adam(0.)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
def train_fn():
@def_function.function
def _call_model(x):
return model(x)
with backprop.GradientTape() as tape:
loss = _call_model(constant_op.constant([[3.]]))
gradients = tape.gradient(loss, model.variables)
return optimizer.apply_gradients(zip(gradients, model.variables))
if not context.executing_eagerly():
train_fn = functools.partial(
self.evaluate, train_fn())
status.initialize_or_restore()
for _ in range(num_training_steps):
train_fn()
if training_continuation > 0:
status.assert_consumed()
self.assertAllClose([[42.]], self.evaluate(model.variables[0]))
else:
self.evaluate(model.variables[0].assign([[42.]]))
root.save(file_prefix=checkpoint_prefix)
self.assertEqual((training_continuation + 1) * num_training_steps,
self.evaluate(optimizer.iterations))
self.assertEqual(training_continuation + 1,
self.evaluate(root.save_counter))
# pylint: enable=cell-var-from-loop
@combinations.generate(combinations.combine(mode=["eager"]))
def testAnonymousVarsInInit(self):
class Model(training.Model):
def __init__(self):
super(Model, self).__init__()
self.w = resource_variable_ops.ResourceVariable(0.0)
self.b = resource_variable_ops.ResourceVariable(0.0)
self.vars = [self.w, self.b]
def call(self, x):
return x * self.w + self.b
model = Model()
optimizer = adam.Adam(learning_rate=0.05)
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
checkpoint = trackable_utils.Checkpoint(
model=model, optimizer=optimizer)
for _ in range(2):
checkpoint.save(checkpoint_prefix)
with backprop.GradientTape() as tape:
loss = (constant_op.constant(1.)
- model(constant_op.constant(1.))) ** 2
grad = tape.gradient(loss, model.vars)
optimizer.apply_gradients(
[(g, v) for g, v in zip(grad, model.vars)])
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def testDeferredSlotRestoration(self):
with self.test_session():
checkpoint_directory = self.get_temp_dir()
root = trackable_utils.Checkpoint()
root.var = trackable_utils.add_variable(
root, name="var", initializer=0.)
optimizer = adam.Adam(0.1)
variables = [root.var]
gradients = [1.]
train_op = optimizer.apply_gradients(zip(gradients, variables))
# Note that `optimizer` has not been added as a dependency of
# `root`. Create a one-off grouping so that slot variables for `root.var`
# get initialized too.
self.evaluate(trackable_utils.gather_initializers(
trackable_utils.Checkpoint(root=root, optimizer=optimizer)))
self.evaluate(train_op)
self.evaluate(state_ops.assign(root.var, 12.))
no_slots_path = root.save(os.path.join(checkpoint_directory, "no_slots"))
root.optimizer = optimizer
self.evaluate(state_ops.assign(root.var, 13.))
self.evaluate(state_ops.assign(
optimizer.get_slot(slot_name="m", var=root.var),
14.))
slots_path = root.save(os.path.join(checkpoint_directory, "with_slots"))
new_root = trackable_utils.Checkpoint()
# Load the slot-containing checkpoint (deferred), then immediately
# overwrite the non-slot variable (also deferred).
slot_status = new_root.restore(slots_path)
no_slot_status = new_root.restore(no_slots_path)
with self.assertRaises(AssertionError):
no_slot_status.assert_consumed()
new_root.var = trackable_utils.add_variable(
new_root, name="var", shape=[])
no_slot_status.assert_consumed()
no_slot_status.run_restore_ops()
self.assertEqual(12., self.evaluate(new_root.var))
new_root.optimizer = adam.Adam(0.1)
slot_status.assert_existing_objects_matched()
if not context.executing_eagerly():
with self.assertRaisesRegex(AssertionError, "Unresolved object"):
slot_status.assert_consumed()
self.assertEqual(12., self.evaluate(new_root.var))
if context.executing_eagerly():
# Slot variables are only created with restoring initializers when
# executing eagerly.
self.assertEqual(14., self.evaluate(
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
else:
# Slot variables are not created eagerly when graph building.
with self.assertRaises(KeyError):
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)
variables = [new_root.var]
gradients = [1.]
train_op = new_root.optimizer.apply_gradients(zip(gradients, variables))
# The slot variable now exists; restore() didn't create it, but we should
# now have a restore op for it.
slot_status.run_restore_ops()
if not context.executing_eagerly():
# The train op hasn't run when graph building, so the slot variable has
# its restored value. It has run in eager, so the value will
# be different.
self.assertEqual(14., self.evaluate(
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
self.evaluate(train_op)
slot_status.assert_consumed()
def testManySavesGraph(self):
"""Saves after the first should not modify the graph."""
with context.graph_mode():
graph = ops.Graph()
with graph.as_default(), self.session(graph):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = trackable_utils.Checkpoint()
obj.var = variables_lib.Variable(0., name="v")
obj.opt = adam.Adam(0.1)
variables = [obj.var]
gradients = [1.]
obj.opt.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(obj))
obj.save(checkpoint_prefix)
graph.finalize()
obj.save(checkpoint_prefix)
def testManyRestoresGraph(self):
"""Restores after the first should not modify the graph."""
with context.graph_mode():
graph = ops.Graph()
with graph.as_default(), self.session(graph):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
obj = trackable_utils.Checkpoint()
obj.var = variables_lib.Variable(0., name="v")
obj.opt = adam.Adam(0.1)
variables = [obj.var]
gradients = [1.]
obj.opt.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(obj))
save_path = obj.save(checkpoint_prefix)
obj.restore(save_path)
graph.finalize()
obj.restore(save_path)
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def test_sequential(self):
with self.test_session():
model = sequential.Sequential()
checkpoint = trackable_utils.Checkpoint(model=model)
model.add(core.Dense(4))
second_dense = core.Dense(5)
model.add(second_dense)
model(constant_op.constant([[1.]]))
checkpoint.restore(None).initialize_or_restore()
self.evaluate(second_dense.bias.assign(
constant_op.constant([1., 2., 3., 4., 5.])))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = checkpoint.save(checkpoint_prefix)
self.evaluate(second_dense.bias.assign(
constant_op.constant([5., 6., 7., 8., 9.])))
checkpoint.restore(save_path).assert_consumed().run_restore_ops()
self.assertAllEqual([1., 2., 3., 4., 5.],
self.evaluate(second_dense.bias))
deferred_sequential = sequential.Sequential()
deferred_sequential_checkpoint = trackable_utils.Checkpoint(
model=deferred_sequential)
status = deferred_sequential_checkpoint.restore(save_path)
deferred_sequential.add(core.Dense(4))
deferred_second_dense = core.Dense(5)
deferred_sequential.add(deferred_second_dense)
deferred_sequential(constant_op.constant([[1.]]))
status.run_restore_ops()
self.assertAllEqual([1., 2., 3., 4., 5.],
self.evaluate(deferred_second_dense.bias))
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def test_initialize_if_not_restoring(self):
with self.test_session():
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
optimizer_only_prefix = os.path.join(checkpoint_directory, "opt")
with testing_utils.device(should_use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
model=model) # Do not save the optimizer with the checkpoint.
optimizer_checkpoint = trackable_utils.Checkpoint(
optimizer=optimizer)
checkpoint_path = checkpoint_management.latest_checkpoint(
checkpoint_directory)
status = root.restore(save_path=checkpoint_path)
input_value = constant_op.constant([[3.]])
def train_fn():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn = functools.partial(self.evaluate, train_fn())
status.initialize_or_restore()
# TODO(tanzheny): Add hyper variables to .variables(), and set them with
# set_weights etc.
variables_not_in_the_variables_property = [
obj for obj in optimizer._hyper.values()
if isinstance(obj, variables_lib.Variable)]
self.evaluate([v.initializer for v
in optimizer.variables()
+ variables_not_in_the_variables_property])
train_fn()
model_save_path = root.save(file_prefix=checkpoint_prefix)
self.evaluate(optimizer.beta_1.assign(42.))
optimizer_save_path = optimizer_checkpoint.save(optimizer_only_prefix)
del train_fn
# Restore into a graph with the optimizer
with testing_utils.device(should_use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
status = root.restore(save_path=model_save_path)
input_value = constant_op.constant([[3.]])
def train_fn1():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn1 = functools.partial(self.evaluate, train_fn1())
status.initialize_or_restore()
train_fn1()
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
with self.assertRaises(AssertionError):
status.assert_consumed()
del train_fn1
# Make sure initialization doesn't clobber later restores
with testing_utils.device(should_use_gpu=True):
model = MyModel()
optimizer = adam.Adam(0.001, beta_1=1.0)
root = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
opt_root = trackable_utils.Checkpoint(
optimizer=optimizer)
status = root.restore(save_path=model_save_path)
init_only_optimizer_status = opt_root.restore(save_path=None)
optimizer_status = opt_root.restore(save_path=optimizer_save_path)
input_value = constant_op.constant([[3.]])
def train_fn2():
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
return optimizer.apply_gradients(zip(gradients, variables))
if not context.executing_eagerly():
train_fn2 = functools.partial(self.evaluate, train_fn2())
optimizer_status.run_restore_ops()
status.initialize_or_restore()
init_only_optimizer_status.initialize_or_restore()
train_fn2()
self.assertEqual(42., self.evaluate(optimizer.beta_1))
class _ManualScope(module.Module):
def __call__(self):
with variable_scope.variable_scope("ManualScope") as vs:
self.variable_scope = vs
with trackable_utils.capture_dependencies(template=self):
return self._build()
def _build(self):
return variable_scope.get_variable(name="in_manual_scope", shape=[])
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
class TemplateTests(keras_parameterized.TestCase):
def test_trackable_save_restore(self):
with self.test_session():
def _templated():
v = variable_scope.get_variable(
"v", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
v2 = variable_scope.get_variable(
"v2", shape=[1], initializer=init_ops.zeros_initializer(),
use_resource=True)
manual = _ManualScope()
return v, v + 1., v2, manual, manual()
save_template = template.make_template("s1", _templated)
v1_save, _, v2_save, manual_scope, manual_scope_v = save_template()
six.assertCountEqual(
self,
[id(v1_save), id(v2_save), id(manual_scope),
id(manual_scope_v), id(save_template)],
map(id, trackable_utils.list_objects(save_template)))
manual_dep, = manual_scope._checkpoint_dependencies
self.assertEqual("in_manual_scope", manual_dep.name)
self.assertIs(manual_scope_v, manual_dep.ref)
optimizer = adam.Adam(0.0)
save_root = trackable_utils.Checkpoint(
my_template=save_template, optimizer=optimizer)
optimizer.minimize(v1_save.read_value,
var_list=[v1_save])
self.evaluate([v.initializer for v in save_template.variables])
optimizer_variables = optimizer.variables() + list(
optimizer._hyper.values())
self.evaluate([v.initializer for v in optimizer_variables])
self.evaluate(v1_save.assign([12.]))
self.evaluate(v2_save.assign([14.]))
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
save_path = save_root.save(checkpoint_prefix)
load_template = template.make_template("s2", _templated)
load_optimizer = adam.Adam(0.0)
load_root = trackable_utils.Checkpoint(
my_template=load_template, optimizer=load_optimizer)
status = load_root.restore(save_path)
var, var_plus_one, var2, _, _ = load_template()
load_optimizer.minimize(var.read_value, var_list=[var])
self.assertLen(load_template._checkpoint_dependencies, 3)
self.assertEqual("v", load_template._checkpoint_dependencies[0].name)
self.assertEqual("v2", load_template._checkpoint_dependencies[1].name)
self.assertEqual("ManualScope",
load_template._checkpoint_dependencies[2].name)
status.assert_consumed().run_restore_ops()
self.assertAllEqual([12.], self.evaluate(var))
self.assertAllEqual([13.], self.evaluate(var_plus_one))
self.assertAllEqual([14.], self.evaluate(var2))
class CheckpointCompatibilityTests(keras_parameterized.TestCase):
def _initialized_model(self):
input_value = constant_op.constant([[3.]])
model = MyModel()
optimizer = adam.Adam(0.001)
root_trackable = trackable_utils.Checkpoint(
optimizer=optimizer, model=model)
with backprop.GradientTape() as tape:
loss = model(input_value)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
train_op = optimizer.apply_gradients(zip(gradients, variables))
self.evaluate(trackable_utils.gather_initializers(
root_trackable))
self.evaluate(train_op)
# A regular variable, a slot variable, and a non-slot Optimizer variable
# with known values to check when loading.
self.evaluate(model._named_dense.bias.assign([1.]))
self.evaluate(optimizer.get_slot(
var=model._named_dense.bias, slot_name="m").assign([2.]))
self.evaluate(optimizer.beta_1.assign(3.))
return root_trackable
def _set_sentinels(self, root_trackable):
self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))
self.evaluate(
root_trackable.optimizer.get_slot(
var=root_trackable.model._named_dense.bias, slot_name="m")
.assign([102.]))
self.evaluate(root_trackable.optimizer.beta_1.assign(103.))
def _check_sentinels(self, root_trackable):
self.assertAllEqual(
[1.], self.evaluate(root_trackable.model._named_dense.bias))
self.assertAllEqual([2.], self.evaluate(
root_trackable.optimizer.get_slot(
var=root_trackable.model._named_dense.bias, slot_name="m")))
self.assertAllEqual(3.,
self.evaluate(root_trackable.optimizer.beta_1))
def _write_name_based_checkpoint(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph) as session:
root = self._initialized_model()
name_saver = saver_lib.Saver()
return name_saver.save(
sess=session,
save_path=checkpoint_prefix,
global_step=root.optimizer.iterations)
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
def testLoadFromNameBasedSaver(self):
"""Save a name-based checkpoint, load it using the object-based API."""
with testing_utils.device(should_use_gpu=True):
with self.test_session():
save_path = self._write_name_based_checkpoint()
root = self._initialized_model()
self._set_sentinels(root)
with self.assertRaises(AssertionError):
self._check_sentinels(root)
object_saver = trackable_utils.TrackableSaver(
graph_view.ObjectGraphView(root))
self._set_sentinels(root)
status = object_saver.restore(save_path)
if context.executing_eagerly():
self._check_sentinels(root)
if context.executing_eagerly():
status.assert_consumed()
status.assert_existing_objects_matched()
status.assert_nontrivial_match()
else:
# When graph building, we haven't read any keys, so we don't know
# whether the restore will be complete.
with self.assertRaisesRegex(AssertionError, "not restored"):
status.assert_consumed()
with self.assertRaisesRegex(AssertionError, "not restored"):
status.assert_existing_objects_matched()
with self.assertRaisesRegex(AssertionError, "not restored"):
status.assert_nontrivial_match()
status.run_restore_ops()
self._check_sentinels(root)
self._set_sentinels(root)
status = object_saver.restore(save_path)
status.initialize_or_restore()
status.assert_nontrivial_match()
self._check_sentinels(root)
# Check that there is no error when keys are missing from the name-based
# checkpoint.
root.not_in_name_checkpoint = resource_variable_ops.ResourceVariable(
[1.])
status = object_saver.restore(save_path)
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
def testSaveGraphLoadEager(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph):
root = self._initialized_model()
save_path = root.save(file_prefix=checkpoint_prefix)
with context.eager_mode():
root = self._initialized_model()
self._set_sentinels(root)
root.restore(save_path).assert_consumed()
self._check_sentinels(root)
def testSaveEagerLoadGraph(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with context.eager_mode():
root = self._initialized_model()
save_path = root.save(file_prefix=checkpoint_prefix)
with context.graph_mode():
save_graph = ops.Graph()
with save_graph.as_default(), self.session(
graph=save_graph):
root = self._initialized_model()
self._set_sentinels(root)
root.restore(save_path).assert_consumed().run_restore_ops()
self._check_sentinels(root)
def testIgnoreSaveCounter(self):
checkpoint_directory = self.get_temp_dir()
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
with self.cached_session() as session:
# Create and save a model using Saver() before using a Checkpoint. This
# generates a snapshot without the Checkpoint's `save_counter`.
model = sequential.Sequential()
model.add(core.Flatten(input_shape=(1,)))
model.add(core.Dense(1))
name_saver = saver_lib.Saver(model.trainable_variables)
save_path = name_saver.save(
sess=session, save_path=checkpoint_prefix, global_step=1)
# Checkpoint.restore must successfully load that checkpoint.
ckpt = trackable_utils.Checkpoint(model=model)
status = ckpt.restore(save_path)
status.assert_existing_objects_matched()
# It should, however, refuse to load a checkpoint where an unrelated
# `save_counter` variable is missing.
model.layers[1].var = variables_lib.Variable(0., name="save_counter")
status = ckpt.restore(save_path)
with self.assertRaises(AssertionError):
status.assert_existing_objects_matched()
if __name__ == "__main__":
ops.enable_eager_execution()
test.main()