940 lines
40 KiB
Python
940 lines
40 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import functools
|
|
import os
|
|
import weakref
|
|
|
|
import six
|
|
|
|
from tensorflow.python.eager import backprop
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.eager import def_function
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.keras import combinations
|
|
from tensorflow.python.keras import keras_parameterized
|
|
from tensorflow.python.keras import testing_utils
|
|
from tensorflow.python.keras.engine import input_layer
|
|
from tensorflow.python.keras.engine import sequential
|
|
from tensorflow.python.keras.engine import training
|
|
from tensorflow.python.keras.layers import core
|
|
from tensorflow.python.keras.optimizer_v2 import adam
|
|
from tensorflow.python.module import module
|
|
from tensorflow.python.ops import control_flow_ops
|
|
from tensorflow.python.ops import init_ops
|
|
from tensorflow.python.ops import resource_variable_ops
|
|
from tensorflow.python.ops import state_ops
|
|
from tensorflow.python.ops import template
|
|
from tensorflow.python.ops import variable_scope
|
|
from tensorflow.python.ops import variables as variables_lib
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.platform import tf_logging as logging
|
|
from tensorflow.python.training import checkpoint_management
|
|
from tensorflow.python.training import saver as saver_lib
|
|
from tensorflow.python.training import training_util
|
|
from tensorflow.python.training.tracking import graph_view
|
|
from tensorflow.python.training.tracking import util as trackable_utils
|
|
|
|
|
|
# pylint: disable=not-callable
|
|
class MyModel(training.Model):
|
|
"""A concrete Model for testing."""
|
|
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
self._named_dense = core.Dense(1, use_bias=True)
|
|
self._second = core.Dense(1, use_bias=False)
|
|
# We can still track Trackables which aren't Layers.
|
|
self._non_layer = NonLayerTrackable()
|
|
|
|
def call(self, values):
|
|
ret = self._second(self._named_dense(values))
|
|
return ret
|
|
|
|
|
|
class NonLayerTrackable(module.Module):
|
|
|
|
def __init__(self):
|
|
super(NonLayerTrackable, self).__init__()
|
|
self.a_variable = trackable_utils.add_variable(
|
|
self, name="a_variable", shape=[])
|
|
|
|
|
|
class InterfaceTests(test.TestCase):
|
|
|
|
def testLayerDeduplication(self):
|
|
model = training.Model()
|
|
layer_one = core.Dense(1)
|
|
layer_two = core.Dense(1)
|
|
model.other_path = [layer_one, layer_two]
|
|
model.l2 = layer_two
|
|
model.l1 = layer_one
|
|
self.assertEqual([layer_one, layer_two], model.layers)
|
|
|
|
def testSaveWithOnlyKerasSession(self):
|
|
|
|
with ops.Graph().as_default(), self.cached_session():
|
|
inp = input_layer.Input([1])
|
|
dense = core.Dense(1)(inp)
|
|
model = training.Model(inp, dense)
|
|
model.compile(optimizer="sgd", loss="mse")
|
|
model.fit([1.], [2.])
|
|
checkpoint = trackable_utils.Checkpoint(model=model)
|
|
checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt"))
|
|
|
|
def testObjectMetadata(self):
|
|
if not context.executing_eagerly():
|
|
self.skipTest("Run in eager mode only.")
|
|
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
dense = core.Dense(1)
|
|
checkpoint = trackable_utils.Checkpoint(dense=dense)
|
|
dense(constant_op.constant([[1.]]))
|
|
save_path = checkpoint.save(checkpoint_prefix)
|
|
|
|
objects = trackable_utils.object_metadata(save_path)
|
|
all_variable_names = []
|
|
for obj in objects.nodes:
|
|
for attribute in obj.attributes:
|
|
all_variable_names.append(attribute.full_name)
|
|
self.assertIn("dense/kernel", all_variable_names)
|
|
|
|
|
|
class CheckpointingTests(keras_parameterized.TestCase):
|
|
|
|
@test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True)
|
|
def testNamingWithOptimizer(self):
|
|
input_value = constant_op.constant([[3.]])
|
|
model = MyModel()
|
|
# A nuisance Model using the same optimizer. Its slot variables should not
|
|
# go in the checkpoint, since it is never depended on.
|
|
other_model = MyModel()
|
|
optimizer = adam.Adam(0.001)
|
|
step = training_util.get_or_create_global_step()
|
|
root_trackable = trackable_utils.Checkpoint(
|
|
optimizer=optimizer, model=model, step=step)
|
|
|
|
with backprop.GradientTape() as tape:
|
|
loss = model(input_value)
|
|
variables = model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
train_op = control_flow_ops.group(
|
|
optimizer.apply_gradients(zip(gradients, variables)),
|
|
step.assign_add(1))
|
|
|
|
with backprop.GradientTape() as tape:
|
|
loss = other_model(input_value)
|
|
variables = other_model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
optimizer.apply_gradients(zip(gradients, variables))
|
|
|
|
self.evaluate(trackable_utils.gather_initializers(
|
|
root_trackable))
|
|
self.evaluate(train_op)
|
|
named_variables, serialized_graph, _ = graph_view.ObjectGraphView(
|
|
root_trackable).serialize_object_graph()
|
|
expected_slot_keys = (
|
|
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m",
|
|
"model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v",
|
|
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m",
|
|
"model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v",
|
|
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m",
|
|
"model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v",
|
|
)
|
|
expected_checkpoint_names = (
|
|
# Created in the root node, so no prefix.
|
|
"step",
|
|
"model/_second/kernel",
|
|
"model/_named_dense/kernel",
|
|
"model/_named_dense/bias",
|
|
# non-Layer dependency of the model
|
|
"model/_non_layer/a_variable",
|
|
"optimizer/learning_rate",
|
|
"optimizer/beta_1",
|
|
"optimizer/beta_2",
|
|
"optimizer/iter",
|
|
"optimizer/decay",
|
|
) + expected_slot_keys
|
|
suffix = "/.ATTRIBUTES/VARIABLE_VALUE"
|
|
expected_checkpoint_names = [
|
|
name + suffix for name in expected_checkpoint_names]
|
|
named_variables = {v.name: v for v in named_variables}
|
|
six.assertCountEqual(self, expected_checkpoint_names,
|
|
named_variables.keys())
|
|
# Check that we've mapped to the right variable objects (not exhaustive)
|
|
self.assertEqual(
|
|
"global_step",
|
|
named_variables["step" + suffix].full_name)
|
|
self.assertEqual(
|
|
"my_model/dense_1/kernel",
|
|
named_variables["model/_second/kernel" + suffix].full_name)
|
|
self.assertEqual(
|
|
"my_model/dense/kernel",
|
|
named_variables["model/_named_dense/kernel" + suffix].full_name)
|
|
self.assertEqual("Adam/beta_1",
|
|
named_variables["optimizer/beta_1" + suffix].full_name)
|
|
self.assertEqual("Adam/beta_2",
|
|
named_variables["optimizer/beta_2" + suffix].full_name)
|
|
# Spot check the generated protocol buffers.
|
|
self.assertEqual("optimizer",
|
|
serialized_graph.nodes[0].children[1].local_name)
|
|
optimizer_node = serialized_graph.nodes[
|
|
serialized_graph.nodes[0].children[1].node_id]
|
|
children = [node.local_name for node in optimizer_node.children]
|
|
six.assertCountEqual(
|
|
self,
|
|
# hyper variable dependencies
|
|
["beta_1", "beta_2", "iter", "decay", "learning_rate"],
|
|
children)
|
|
serialized_slot_keys = []
|
|
for slot in optimizer_node.slot_variables:
|
|
for attribute in (
|
|
serialized_graph.nodes[slot.slot_variable_node_id].attributes):
|
|
serialized_slot_keys.append(attribute.checkpoint_key)
|
|
six.assertCountEqual(
|
|
self,
|
|
[key + suffix for key in expected_slot_keys],
|
|
serialized_slot_keys)
|
|
|
|
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
|
|
def testSaveRestore(self):
|
|
with self.test_session():
|
|
model = MyModel()
|
|
optimizer = adam.Adam(0.001)
|
|
root_trackable = trackable_utils.Checkpoint(
|
|
optimizer=optimizer, model=model)
|
|
input_value = constant_op.constant([[3.]])
|
|
with backprop.GradientTape() as tape:
|
|
loss = model(input_value)
|
|
variables = model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
train_op = optimizer.apply_gradients(zip(gradients, variables))
|
|
self.assertFalse(root_trackable.save_counter.trainable)
|
|
self.evaluate(trackable_utils.gather_initializers(
|
|
root_trackable))
|
|
self.evaluate(train_op)
|
|
prefix = os.path.join(self.get_temp_dir(), "ckpt")
|
|
self.evaluate(state_ops.assign(model._named_dense.variables[1], [42.]))
|
|
m_bias_slot = optimizer.get_slot(model._named_dense.variables[1], "m")
|
|
self.evaluate(state_ops.assign(m_bias_slot, [1.5]))
|
|
save_path = root_trackable.save(file_prefix=prefix)
|
|
self.evaluate(state_ops.assign(model._named_dense.variables[1], [43.]))
|
|
self.evaluate(state_ops.assign(root_trackable.save_counter, 3))
|
|
optimizer_variables = self.evaluate(
|
|
sorted(optimizer.variables(), key=lambda v: v.name))
|
|
self.evaluate(state_ops.assign(m_bias_slot, [-2.]))
|
|
# Immediate restoration
|
|
status = root_trackable.restore(save_path=save_path).assert_consumed()
|
|
status.run_restore_ops()
|
|
self.assertAllEqual([42.], self.evaluate(model._named_dense.variables[1]))
|
|
self.assertAllEqual(1, self.evaluate(root_trackable.save_counter))
|
|
self.assertAllEqual([1.5], self.evaluate(m_bias_slot))
|
|
if not context.executing_eagerly():
|
|
return # Restore-on-create is only supported when executing eagerly
|
|
on_create_model = MyModel()
|
|
on_create_optimizer = adam.Adam(0.001)
|
|
on_create_root = trackable_utils.Checkpoint(
|
|
optimizer=on_create_optimizer, model=on_create_model)
|
|
# Deferred restoration
|
|
status = on_create_root.restore(save_path=save_path)
|
|
status.assert_nontrivial_match()
|
|
status.assert_existing_objects_matched()
|
|
with self.assertRaises(AssertionError):
|
|
status.assert_consumed()
|
|
on_create_model(constant_op.constant([[3.]])) # create variables
|
|
self.assertAllEqual(1, self.evaluate(on_create_root.save_counter))
|
|
self.assertAllEqual([42.],
|
|
self.evaluate(
|
|
on_create_model._named_dense.variables[1]))
|
|
on_create_m_bias_slot = on_create_optimizer.get_slot(
|
|
on_create_model._named_dense.variables[1], "m")
|
|
status.assert_existing_objects_matched()
|
|
if not context.executing_eagerly():
|
|
with self.assertRaises(AssertionError):
|
|
status.assert_consumed()
|
|
# Optimizer slot variables are created when the original variable is
|
|
# restored.
|
|
self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot))
|
|
dummy_var = resource_variable_ops.ResourceVariable([1.])
|
|
on_create_optimizer.minimize(loss=dummy_var.read_value,
|
|
var_list=[dummy_var])
|
|
status.assert_existing_objects_matched()
|
|
status.assert_consumed()
|
|
self.assertAllEqual(
|
|
optimizer_variables,
|
|
# Creation order is different, so .variables() needs to be re-sorted.
|
|
self.evaluate(sorted(optimizer.variables(), key=lambda v: v.name)))
|
|
|
|
# TODO(allenl): Debug garbage created by this test in python3.
|
|
def testDeferredRestorationUsageEager(self):
|
|
"""An idiomatic eager execution example."""
|
|
num_training_steps = 10
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
for training_continuation in range(3):
|
|
model = MyModel()
|
|
optimizer = adam.Adam(0.001)
|
|
root = trackable_utils.Checkpoint(
|
|
optimizer=optimizer, model=model)
|
|
root.restore(checkpoint_management.latest_checkpoint(
|
|
checkpoint_directory))
|
|
for _ in range(num_training_steps):
|
|
# TODO(allenl): Use a Dataset and serialize/checkpoint it.
|
|
input_value = constant_op.constant([[3.]])
|
|
with backprop.GradientTape() as tape:
|
|
loss = model(input_value)
|
|
variables = model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
optimizer.apply_gradients(zip(gradients, variables))
|
|
root.save(file_prefix=checkpoint_prefix)
|
|
self.assertEqual((training_continuation + 1) * num_training_steps,
|
|
root.optimizer.iterations.numpy())
|
|
|
|
def testUsageGraph(self):
|
|
"""Expected usage when graph building."""
|
|
with context.graph_mode():
|
|
num_training_steps = 10
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
for training_continuation in range(3):
|
|
with ops.Graph().as_default():
|
|
model = MyModel()
|
|
optimizer = adam.Adam(0.001)
|
|
root = trackable_utils.CheckpointV1(
|
|
optimizer=optimizer, model=model)
|
|
input_value = constant_op.constant([[3.]])
|
|
with backprop.GradientTape() as tape:
|
|
loss = model(input_value)
|
|
variables = model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
train_op = optimizer.apply_gradients(zip(gradients, variables))
|
|
|
|
checkpoint_path = checkpoint_management.latest_checkpoint(
|
|
checkpoint_directory)
|
|
with self.session(graph=ops.get_default_graph()) as session:
|
|
status = root.restore(save_path=checkpoint_path)
|
|
status.initialize_or_restore(session=session)
|
|
if checkpoint_path is None:
|
|
self.assertEqual(0, training_continuation)
|
|
with self.assertRaises(AssertionError):
|
|
status.assert_consumed()
|
|
with self.assertRaises(AssertionError):
|
|
status.assert_existing_objects_matched()
|
|
else:
|
|
status.assert_consumed()
|
|
status.assert_existing_objects_matched()
|
|
for _ in range(num_training_steps):
|
|
session.run(train_op)
|
|
root.save(file_prefix=checkpoint_prefix, session=session)
|
|
self.assertEqual((training_continuation + 1) * num_training_steps,
|
|
session.run(root.optimizer.iterations))
|
|
self.assertEqual(training_continuation + 1,
|
|
session.run(root.save_counter))
|
|
|
|
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
|
|
def testAgnosticUsage(self):
|
|
"""Graph/eager agnostic usage."""
|
|
# Does create garbage when executing eagerly due to ops.Graph() creation.
|
|
with self.test_session():
|
|
num_training_steps = 10
|
|
checkpoint_directory = self.get_temp_dir()
|
|
optimizer = adam.Adam(0.001)
|
|
def _train_fn(model, input_value):
|
|
with backprop.GradientTape() as tape:
|
|
loss = model(input_value)
|
|
variables = model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
return optimizer.apply_gradients(zip(gradients, variables))
|
|
for training_continuation in range(3):
|
|
with testing_utils.device(should_use_gpu=True):
|
|
model = MyModel()
|
|
root = trackable_utils.Checkpoint(
|
|
optimizer=optimizer, model=model)
|
|
manager = checkpoint_management.CheckpointManager(
|
|
root, checkpoint_directory, max_to_keep=1)
|
|
status = root.restore(save_path=manager.latest_checkpoint)
|
|
input_value = constant_op.constant([[3.]])
|
|
train_fn = functools.partial(_train_fn, model, input_value)
|
|
if not context.executing_eagerly():
|
|
train_fn = functools.partial(self.evaluate, train_fn())
|
|
status.initialize_or_restore()
|
|
for _ in range(num_training_steps):
|
|
train_fn()
|
|
manager.save()
|
|
self.assertEqual((training_continuation + 1) * num_training_steps,
|
|
self.evaluate(root.optimizer.iterations))
|
|
self.assertEqual(training_continuation + 1,
|
|
self.evaluate(root.save_counter))
|
|
|
|
@combinations.generate(combinations.combine(mode=["eager"]))
|
|
def testPartialRestoreWarningObject(self):
|
|
optimizer = adam.Adam(0.0)
|
|
original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.),
|
|
v2=variables_lib.Variable(3.),
|
|
optimizer=optimizer)
|
|
# Create a slot variable to save
|
|
optimizer.minimize(original_root.v1.read_value, [original_root.v1])
|
|
prefix = os.path.join(self.get_temp_dir(), "ckpt")
|
|
save_path = original_root.save(prefix)
|
|
partial_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(0.))
|
|
weak_partial_root = weakref.ref(partial_root)
|
|
weak_v1 = weakref.ref(partial_root.v1)
|
|
partial_root.restore(save_path)
|
|
self.assertEqual(2., partial_root.v1.numpy())
|
|
with test.mock.patch.object(logging, "warning") as mock_log:
|
|
del partial_root
|
|
self.assertIsNone(weak_partial_root())
|
|
self.assertIsNone(weak_v1())
|
|
messages = str(mock_log.call_args_list)
|
|
self.assertIn("(root).v2'", messages)
|
|
self.assertIn("(root).optimizer's state 'm' for (root).v1", messages)
|
|
self.assertNotIn("(root).v1'", messages)
|
|
self.assertIn("expect_partial()", messages)
|
|
|
|
# pylint: disable=cell-var-from-loop
|
|
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
|
|
def testWithDefun(self):
|
|
with self.test_session():
|
|
num_training_steps = 2
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
for training_continuation in range(3):
|
|
with testing_utils.device(should_use_gpu=True):
|
|
model = MyModel()
|
|
# Don't actually train so we can test variable values
|
|
optimizer = adam.Adam(0.)
|
|
root = trackable_utils.Checkpoint(
|
|
optimizer=optimizer, model=model)
|
|
checkpoint_path = checkpoint_management.latest_checkpoint(
|
|
checkpoint_directory)
|
|
status = root.restore(save_path=checkpoint_path)
|
|
def train_fn():
|
|
@def_function.function
|
|
def _call_model(x):
|
|
return model(x)
|
|
with backprop.GradientTape() as tape:
|
|
loss = _call_model(constant_op.constant([[3.]]))
|
|
gradients = tape.gradient(loss, model.variables)
|
|
return optimizer.apply_gradients(zip(gradients, model.variables))
|
|
if not context.executing_eagerly():
|
|
train_fn = functools.partial(
|
|
self.evaluate, train_fn())
|
|
status.initialize_or_restore()
|
|
for _ in range(num_training_steps):
|
|
train_fn()
|
|
if training_continuation > 0:
|
|
status.assert_consumed()
|
|
self.assertAllClose([[42.]], self.evaluate(model.variables[0]))
|
|
else:
|
|
self.evaluate(model.variables[0].assign([[42.]]))
|
|
root.save(file_prefix=checkpoint_prefix)
|
|
self.assertEqual((training_continuation + 1) * num_training_steps,
|
|
self.evaluate(optimizer.iterations))
|
|
self.assertEqual(training_continuation + 1,
|
|
self.evaluate(root.save_counter))
|
|
# pylint: enable=cell-var-from-loop
|
|
|
|
@combinations.generate(combinations.combine(mode=["eager"]))
|
|
def testAnonymousVarsInInit(self):
|
|
|
|
class Model(training.Model):
|
|
|
|
def __init__(self):
|
|
super(Model, self).__init__()
|
|
self.w = resource_variable_ops.ResourceVariable(0.0)
|
|
self.b = resource_variable_ops.ResourceVariable(0.0)
|
|
self.vars = [self.w, self.b]
|
|
|
|
def call(self, x):
|
|
return x * self.w + self.b
|
|
|
|
model = Model()
|
|
optimizer = adam.Adam(learning_rate=0.05)
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
checkpoint = trackable_utils.Checkpoint(
|
|
model=model, optimizer=optimizer)
|
|
for _ in range(2):
|
|
checkpoint.save(checkpoint_prefix)
|
|
with backprop.GradientTape() as tape:
|
|
loss = (constant_op.constant(1.)
|
|
- model(constant_op.constant(1.))) ** 2
|
|
grad = tape.gradient(loss, model.vars)
|
|
optimizer.apply_gradients(
|
|
[(g, v) for g, v in zip(grad, model.vars)])
|
|
|
|
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
|
|
def testDeferredSlotRestoration(self):
|
|
with self.test_session():
|
|
checkpoint_directory = self.get_temp_dir()
|
|
|
|
root = trackable_utils.Checkpoint()
|
|
root.var = trackable_utils.add_variable(
|
|
root, name="var", initializer=0.)
|
|
optimizer = adam.Adam(0.1)
|
|
variables = [root.var]
|
|
gradients = [1.]
|
|
train_op = optimizer.apply_gradients(zip(gradients, variables))
|
|
# Note that `optimizer` has not been added as a dependency of
|
|
# `root`. Create a one-off grouping so that slot variables for `root.var`
|
|
# get initialized too.
|
|
self.evaluate(trackable_utils.gather_initializers(
|
|
trackable_utils.Checkpoint(root=root, optimizer=optimizer)))
|
|
self.evaluate(train_op)
|
|
self.evaluate(state_ops.assign(root.var, 12.))
|
|
no_slots_path = root.save(os.path.join(checkpoint_directory, "no_slots"))
|
|
root.optimizer = optimizer
|
|
self.evaluate(state_ops.assign(root.var, 13.))
|
|
self.evaluate(state_ops.assign(
|
|
optimizer.get_slot(slot_name="m", var=root.var),
|
|
14.))
|
|
slots_path = root.save(os.path.join(checkpoint_directory, "with_slots"))
|
|
new_root = trackable_utils.Checkpoint()
|
|
# Load the slot-containing checkpoint (deferred), then immediately
|
|
# overwrite the non-slot variable (also deferred).
|
|
slot_status = new_root.restore(slots_path)
|
|
no_slot_status = new_root.restore(no_slots_path)
|
|
with self.assertRaises(AssertionError):
|
|
no_slot_status.assert_consumed()
|
|
new_root.var = trackable_utils.add_variable(
|
|
new_root, name="var", shape=[])
|
|
no_slot_status.assert_consumed()
|
|
no_slot_status.run_restore_ops()
|
|
self.assertEqual(12., self.evaluate(new_root.var))
|
|
new_root.optimizer = adam.Adam(0.1)
|
|
slot_status.assert_existing_objects_matched()
|
|
if not context.executing_eagerly():
|
|
with self.assertRaisesRegex(AssertionError, "Unresolved object"):
|
|
slot_status.assert_consumed()
|
|
self.assertEqual(12., self.evaluate(new_root.var))
|
|
if context.executing_eagerly():
|
|
# Slot variables are only created with restoring initializers when
|
|
# executing eagerly.
|
|
self.assertEqual(14., self.evaluate(
|
|
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
|
|
else:
|
|
# Slot variables are not created eagerly when graph building.
|
|
with self.assertRaises(KeyError):
|
|
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)
|
|
variables = [new_root.var]
|
|
gradients = [1.]
|
|
train_op = new_root.optimizer.apply_gradients(zip(gradients, variables))
|
|
# The slot variable now exists; restore() didn't create it, but we should
|
|
# now have a restore op for it.
|
|
slot_status.run_restore_ops()
|
|
if not context.executing_eagerly():
|
|
# The train op hasn't run when graph building, so the slot variable has
|
|
# its restored value. It has run in eager, so the value will
|
|
# be different.
|
|
self.assertEqual(14., self.evaluate(
|
|
new_root.optimizer.get_slot(slot_name="m", var=new_root.var)))
|
|
self.evaluate(train_op)
|
|
slot_status.assert_consumed()
|
|
|
|
def testManySavesGraph(self):
|
|
"""Saves after the first should not modify the graph."""
|
|
with context.graph_mode():
|
|
graph = ops.Graph()
|
|
with graph.as_default(), self.session(graph):
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
obj = trackable_utils.Checkpoint()
|
|
obj.var = variables_lib.Variable(0., name="v")
|
|
obj.opt = adam.Adam(0.1)
|
|
variables = [obj.var]
|
|
gradients = [1.]
|
|
obj.opt.apply_gradients(zip(gradients, variables))
|
|
self.evaluate(trackable_utils.gather_initializers(obj))
|
|
obj.save(checkpoint_prefix)
|
|
graph.finalize()
|
|
obj.save(checkpoint_prefix)
|
|
|
|
def testManyRestoresGraph(self):
|
|
"""Restores after the first should not modify the graph."""
|
|
with context.graph_mode():
|
|
graph = ops.Graph()
|
|
with graph.as_default(), self.session(graph):
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
obj = trackable_utils.Checkpoint()
|
|
obj.var = variables_lib.Variable(0., name="v")
|
|
obj.opt = adam.Adam(0.1)
|
|
variables = [obj.var]
|
|
gradients = [1.]
|
|
obj.opt.apply_gradients(zip(gradients, variables))
|
|
self.evaluate(trackable_utils.gather_initializers(obj))
|
|
save_path = obj.save(checkpoint_prefix)
|
|
obj.restore(save_path)
|
|
graph.finalize()
|
|
obj.restore(save_path)
|
|
|
|
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
|
|
def test_sequential(self):
|
|
with self.test_session():
|
|
model = sequential.Sequential()
|
|
checkpoint = trackable_utils.Checkpoint(model=model)
|
|
model.add(core.Dense(4))
|
|
second_dense = core.Dense(5)
|
|
model.add(second_dense)
|
|
model(constant_op.constant([[1.]]))
|
|
checkpoint.restore(None).initialize_or_restore()
|
|
self.evaluate(second_dense.bias.assign(
|
|
constant_op.constant([1., 2., 3., 4., 5.])))
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
save_path = checkpoint.save(checkpoint_prefix)
|
|
self.evaluate(second_dense.bias.assign(
|
|
constant_op.constant([5., 6., 7., 8., 9.])))
|
|
checkpoint.restore(save_path).assert_consumed().run_restore_ops()
|
|
self.assertAllEqual([1., 2., 3., 4., 5.],
|
|
self.evaluate(second_dense.bias))
|
|
|
|
deferred_sequential = sequential.Sequential()
|
|
deferred_sequential_checkpoint = trackable_utils.Checkpoint(
|
|
model=deferred_sequential)
|
|
status = deferred_sequential_checkpoint.restore(save_path)
|
|
deferred_sequential.add(core.Dense(4))
|
|
deferred_second_dense = core.Dense(5)
|
|
deferred_sequential.add(deferred_second_dense)
|
|
deferred_sequential(constant_op.constant([[1.]]))
|
|
status.run_restore_ops()
|
|
self.assertAllEqual([1., 2., 3., 4., 5.],
|
|
self.evaluate(deferred_second_dense.bias))
|
|
|
|
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
|
|
def test_initialize_if_not_restoring(self):
|
|
with self.test_session():
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
optimizer_only_prefix = os.path.join(checkpoint_directory, "opt")
|
|
with testing_utils.device(should_use_gpu=True):
|
|
model = MyModel()
|
|
optimizer = adam.Adam(0.001)
|
|
root = trackable_utils.Checkpoint(
|
|
model=model) # Do not save the optimizer with the checkpoint.
|
|
optimizer_checkpoint = trackable_utils.Checkpoint(
|
|
optimizer=optimizer)
|
|
|
|
checkpoint_path = checkpoint_management.latest_checkpoint(
|
|
checkpoint_directory)
|
|
status = root.restore(save_path=checkpoint_path)
|
|
input_value = constant_op.constant([[3.]])
|
|
def train_fn():
|
|
with backprop.GradientTape() as tape:
|
|
loss = model(input_value)
|
|
variables = model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
return optimizer.apply_gradients(zip(gradients, variables))
|
|
if not context.executing_eagerly():
|
|
train_fn = functools.partial(self.evaluate, train_fn())
|
|
status.initialize_or_restore()
|
|
# TODO(tanzheny): Add hyper variables to .variables(), and set them with
|
|
# set_weights etc.
|
|
variables_not_in_the_variables_property = [
|
|
obj for obj in optimizer._hyper.values()
|
|
if isinstance(obj, variables_lib.Variable)]
|
|
self.evaluate([v.initializer for v
|
|
in optimizer.variables()
|
|
+ variables_not_in_the_variables_property])
|
|
train_fn()
|
|
model_save_path = root.save(file_prefix=checkpoint_prefix)
|
|
self.evaluate(optimizer.beta_1.assign(42.))
|
|
optimizer_save_path = optimizer_checkpoint.save(optimizer_only_prefix)
|
|
del train_fn
|
|
|
|
# Restore into a graph with the optimizer
|
|
with testing_utils.device(should_use_gpu=True):
|
|
model = MyModel()
|
|
optimizer = adam.Adam(0.001)
|
|
root = trackable_utils.Checkpoint(
|
|
optimizer=optimizer, model=model)
|
|
status = root.restore(save_path=model_save_path)
|
|
input_value = constant_op.constant([[3.]])
|
|
def train_fn1():
|
|
with backprop.GradientTape() as tape:
|
|
loss = model(input_value)
|
|
variables = model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
return optimizer.apply_gradients(zip(gradients, variables))
|
|
if not context.executing_eagerly():
|
|
train_fn1 = functools.partial(self.evaluate, train_fn1())
|
|
status.initialize_or_restore()
|
|
train_fn1()
|
|
with self.assertRaises(AssertionError):
|
|
status.assert_existing_objects_matched()
|
|
with self.assertRaises(AssertionError):
|
|
status.assert_consumed()
|
|
del train_fn1
|
|
|
|
# Make sure initialization doesn't clobber later restores
|
|
with testing_utils.device(should_use_gpu=True):
|
|
model = MyModel()
|
|
optimizer = adam.Adam(0.001, beta_1=1.0)
|
|
root = trackable_utils.Checkpoint(
|
|
optimizer=optimizer, model=model)
|
|
opt_root = trackable_utils.Checkpoint(
|
|
optimizer=optimizer)
|
|
status = root.restore(save_path=model_save_path)
|
|
init_only_optimizer_status = opt_root.restore(save_path=None)
|
|
optimizer_status = opt_root.restore(save_path=optimizer_save_path)
|
|
input_value = constant_op.constant([[3.]])
|
|
def train_fn2():
|
|
with backprop.GradientTape() as tape:
|
|
loss = model(input_value)
|
|
variables = model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
return optimizer.apply_gradients(zip(gradients, variables))
|
|
if not context.executing_eagerly():
|
|
train_fn2 = functools.partial(self.evaluate, train_fn2())
|
|
optimizer_status.run_restore_ops()
|
|
status.initialize_or_restore()
|
|
init_only_optimizer_status.initialize_or_restore()
|
|
train_fn2()
|
|
self.assertEqual(42., self.evaluate(optimizer.beta_1))
|
|
|
|
|
|
class _ManualScope(module.Module):
|
|
|
|
def __call__(self):
|
|
with variable_scope.variable_scope("ManualScope") as vs:
|
|
self.variable_scope = vs
|
|
with trackable_utils.capture_dependencies(template=self):
|
|
return self._build()
|
|
|
|
def _build(self):
|
|
return variable_scope.get_variable(name="in_manual_scope", shape=[])
|
|
|
|
|
|
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
|
|
class TemplateTests(keras_parameterized.TestCase):
|
|
|
|
def test_trackable_save_restore(self):
|
|
with self.test_session():
|
|
def _templated():
|
|
v = variable_scope.get_variable(
|
|
"v", shape=[1], initializer=init_ops.zeros_initializer(),
|
|
use_resource=True)
|
|
v2 = variable_scope.get_variable(
|
|
"v2", shape=[1], initializer=init_ops.zeros_initializer(),
|
|
use_resource=True)
|
|
manual = _ManualScope()
|
|
return v, v + 1., v2, manual, manual()
|
|
|
|
save_template = template.make_template("s1", _templated)
|
|
v1_save, _, v2_save, manual_scope, manual_scope_v = save_template()
|
|
six.assertCountEqual(
|
|
self,
|
|
[id(v1_save), id(v2_save), id(manual_scope),
|
|
id(manual_scope_v), id(save_template)],
|
|
map(id, trackable_utils.list_objects(save_template)))
|
|
manual_dep, = manual_scope._checkpoint_dependencies
|
|
self.assertEqual("in_manual_scope", manual_dep.name)
|
|
self.assertIs(manual_scope_v, manual_dep.ref)
|
|
optimizer = adam.Adam(0.0)
|
|
save_root = trackable_utils.Checkpoint(
|
|
my_template=save_template, optimizer=optimizer)
|
|
optimizer.minimize(v1_save.read_value,
|
|
var_list=[v1_save])
|
|
self.evaluate([v.initializer for v in save_template.variables])
|
|
optimizer_variables = optimizer.variables() + list(
|
|
optimizer._hyper.values())
|
|
self.evaluate([v.initializer for v in optimizer_variables])
|
|
self.evaluate(v1_save.assign([12.]))
|
|
self.evaluate(v2_save.assign([14.]))
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
save_path = save_root.save(checkpoint_prefix)
|
|
|
|
load_template = template.make_template("s2", _templated)
|
|
load_optimizer = adam.Adam(0.0)
|
|
load_root = trackable_utils.Checkpoint(
|
|
my_template=load_template, optimizer=load_optimizer)
|
|
status = load_root.restore(save_path)
|
|
var, var_plus_one, var2, _, _ = load_template()
|
|
load_optimizer.minimize(var.read_value, var_list=[var])
|
|
self.assertLen(load_template._checkpoint_dependencies, 3)
|
|
self.assertEqual("v", load_template._checkpoint_dependencies[0].name)
|
|
self.assertEqual("v2", load_template._checkpoint_dependencies[1].name)
|
|
self.assertEqual("ManualScope",
|
|
load_template._checkpoint_dependencies[2].name)
|
|
status.assert_consumed().run_restore_ops()
|
|
self.assertAllEqual([12.], self.evaluate(var))
|
|
self.assertAllEqual([13.], self.evaluate(var_plus_one))
|
|
self.assertAllEqual([14.], self.evaluate(var2))
|
|
|
|
|
|
class CheckpointCompatibilityTests(keras_parameterized.TestCase):
|
|
|
|
def _initialized_model(self):
|
|
input_value = constant_op.constant([[3.]])
|
|
model = MyModel()
|
|
optimizer = adam.Adam(0.001)
|
|
root_trackable = trackable_utils.Checkpoint(
|
|
optimizer=optimizer, model=model)
|
|
with backprop.GradientTape() as tape:
|
|
loss = model(input_value)
|
|
variables = model.trainable_variables
|
|
gradients = tape.gradient(loss, variables)
|
|
train_op = optimizer.apply_gradients(zip(gradients, variables))
|
|
self.evaluate(trackable_utils.gather_initializers(
|
|
root_trackable))
|
|
self.evaluate(train_op)
|
|
# A regular variable, a slot variable, and a non-slot Optimizer variable
|
|
# with known values to check when loading.
|
|
self.evaluate(model._named_dense.bias.assign([1.]))
|
|
self.evaluate(optimizer.get_slot(
|
|
var=model._named_dense.bias, slot_name="m").assign([2.]))
|
|
self.evaluate(optimizer.beta_1.assign(3.))
|
|
return root_trackable
|
|
|
|
def _set_sentinels(self, root_trackable):
|
|
self.evaluate(root_trackable.model._named_dense.bias.assign([101.]))
|
|
self.evaluate(
|
|
root_trackable.optimizer.get_slot(
|
|
var=root_trackable.model._named_dense.bias, slot_name="m")
|
|
.assign([102.]))
|
|
self.evaluate(root_trackable.optimizer.beta_1.assign(103.))
|
|
|
|
def _check_sentinels(self, root_trackable):
|
|
self.assertAllEqual(
|
|
[1.], self.evaluate(root_trackable.model._named_dense.bias))
|
|
self.assertAllEqual([2.], self.evaluate(
|
|
root_trackable.optimizer.get_slot(
|
|
var=root_trackable.model._named_dense.bias, slot_name="m")))
|
|
self.assertAllEqual(3.,
|
|
self.evaluate(root_trackable.optimizer.beta_1))
|
|
|
|
def _write_name_based_checkpoint(self):
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
with context.graph_mode():
|
|
save_graph = ops.Graph()
|
|
with save_graph.as_default(), self.session(
|
|
graph=save_graph) as session:
|
|
root = self._initialized_model()
|
|
name_saver = saver_lib.Saver()
|
|
return name_saver.save(
|
|
sess=session,
|
|
save_path=checkpoint_prefix,
|
|
global_step=root.optimizer.iterations)
|
|
|
|
@combinations.generate(combinations.combine(mode=["graph", "eager"]))
|
|
def testLoadFromNameBasedSaver(self):
|
|
"""Save a name-based checkpoint, load it using the object-based API."""
|
|
with testing_utils.device(should_use_gpu=True):
|
|
with self.test_session():
|
|
save_path = self._write_name_based_checkpoint()
|
|
root = self._initialized_model()
|
|
self._set_sentinels(root)
|
|
with self.assertRaises(AssertionError):
|
|
self._check_sentinels(root)
|
|
object_saver = trackable_utils.TrackableSaver(
|
|
graph_view.ObjectGraphView(root))
|
|
self._set_sentinels(root)
|
|
status = object_saver.restore(save_path)
|
|
if context.executing_eagerly():
|
|
self._check_sentinels(root)
|
|
if context.executing_eagerly():
|
|
status.assert_consumed()
|
|
status.assert_existing_objects_matched()
|
|
status.assert_nontrivial_match()
|
|
else:
|
|
# When graph building, we haven't read any keys, so we don't know
|
|
# whether the restore will be complete.
|
|
with self.assertRaisesRegex(AssertionError, "not restored"):
|
|
status.assert_consumed()
|
|
with self.assertRaisesRegex(AssertionError, "not restored"):
|
|
status.assert_existing_objects_matched()
|
|
with self.assertRaisesRegex(AssertionError, "not restored"):
|
|
status.assert_nontrivial_match()
|
|
status.run_restore_ops()
|
|
self._check_sentinels(root)
|
|
self._set_sentinels(root)
|
|
status = object_saver.restore(save_path)
|
|
status.initialize_or_restore()
|
|
status.assert_nontrivial_match()
|
|
self._check_sentinels(root)
|
|
# Check that there is no error when keys are missing from the name-based
|
|
# checkpoint.
|
|
root.not_in_name_checkpoint = resource_variable_ops.ResourceVariable(
|
|
[1.])
|
|
status = object_saver.restore(save_path)
|
|
with self.assertRaises(AssertionError):
|
|
status.assert_existing_objects_matched()
|
|
|
|
def testSaveGraphLoadEager(self):
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
with context.graph_mode():
|
|
save_graph = ops.Graph()
|
|
with save_graph.as_default(), self.session(
|
|
graph=save_graph):
|
|
root = self._initialized_model()
|
|
save_path = root.save(file_prefix=checkpoint_prefix)
|
|
with context.eager_mode():
|
|
root = self._initialized_model()
|
|
self._set_sentinels(root)
|
|
root.restore(save_path).assert_consumed()
|
|
self._check_sentinels(root)
|
|
|
|
def testSaveEagerLoadGraph(self):
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
with context.eager_mode():
|
|
root = self._initialized_model()
|
|
save_path = root.save(file_prefix=checkpoint_prefix)
|
|
with context.graph_mode():
|
|
save_graph = ops.Graph()
|
|
with save_graph.as_default(), self.session(
|
|
graph=save_graph):
|
|
root = self._initialized_model()
|
|
self._set_sentinels(root)
|
|
root.restore(save_path).assert_consumed().run_restore_ops()
|
|
self._check_sentinels(root)
|
|
|
|
def testIgnoreSaveCounter(self):
|
|
checkpoint_directory = self.get_temp_dir()
|
|
checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
|
|
with self.cached_session() as session:
|
|
# Create and save a model using Saver() before using a Checkpoint. This
|
|
# generates a snapshot without the Checkpoint's `save_counter`.
|
|
model = sequential.Sequential()
|
|
model.add(core.Flatten(input_shape=(1,)))
|
|
model.add(core.Dense(1))
|
|
name_saver = saver_lib.Saver(model.trainable_variables)
|
|
save_path = name_saver.save(
|
|
sess=session, save_path=checkpoint_prefix, global_step=1)
|
|
# Checkpoint.restore must successfully load that checkpoint.
|
|
ckpt = trackable_utils.Checkpoint(model=model)
|
|
status = ckpt.restore(save_path)
|
|
status.assert_existing_objects_matched()
|
|
# It should, however, refuse to load a checkpoint where an unrelated
|
|
# `save_counter` variable is missing.
|
|
model.layers[1].var = variables_lib.Variable(0., name="save_counter")
|
|
status = ckpt.restore(save_path)
|
|
with self.assertRaises(AssertionError):
|
|
status.assert_existing_objects_matched()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ops.enable_eager_execution()
|
|
test.main()
|